# NOT RUN {
## Example 1 ##
# true response pattern: dominant model c=(1, 1, -2)
set.seed(136885)
x <- c(
rnorm(130, mean = 1 / 6, sd = 1),
rnorm( 90, mean = 1 / 6, sd = 1),
rnorm( 10, mean = -2 / 6, sd = 1)
)
g <- rep(1:3, c(130, 90, 10))
boxplot(
x ~ g,
width = c(length(g[g==1]), length(g[g==2]), length(g[g==3])),
main = "Dominant model (sample data)",
xlab = "Genotype", ylab="PK parameter"
)
# coefficient matrix
# c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2)
)
y <- mmcm.mvt(x, g, contrast)
y
## Example 2 ##
# for dataframe
# true response pattern:
# pos = 1 dominant model c=( 1, 1, -2)
# 2 additive model c=(-1, 0, 1)
# 3 recessive model c=( 2, -1, -1)
set.seed(3872435)
x <- c(
rnorm(130, mean = 1 / 6, sd = 1),
rnorm( 90, mean = 1 / 6, sd = 1),
rnorm( 10, mean = -2 / 6, sd = 1),
rnorm(130, mean = -1 / 4, sd = 1),
rnorm( 90, mean = 0 / 4, sd = 1),
rnorm( 10, mean = 1 / 4, sd = 1),
rnorm(130, mean = 2 / 6, sd = 1),
rnorm( 90, mean = -1 / 6, sd = 1),
rnorm( 10, mean = -1 / 6, sd = 1)
)
g <- rep(rep(1:3, c(130, 90, 10)), 3)
pos <- rep(c("rsXXXX", "rsYYYY", "rsZZZZ"), each=230)
xx <- data.frame(pos = pos, x = x, g = g)
# coefficient matrix
# c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2)
)
y <- by(xx, xx$pos, function(x) mmcm.mvt(x$x, x$g,
contrast))
y <- do.call(rbind, y)[,c(3,7,9)]
y
# }
Run the code above in your browser using DataLab