### regression
y=c(1:94,95.01,96.1,97.2,97.8,99.3,99.7);x=rnorm(100,5,0.3)+y
print(mmetric(y,x,"MAE"))
print(mmetric(y,x,"RMSE"))
print(mmetric(y,x,"TOLERANCE",val=5))
print(mmetric(y[95:100],x[95:100],"THEILSU2",val=y[1:94])) # b = in-samples
print(mmetric(y[95:100],x[95:100],"MASE",val=y[1:94])) # b = in-samples
print(metrics(y,x)) # several regression metrics
# user defined error function example:
# myerror = number of samples with absolute error above 10% of y:
myerror=function(y,x){return (sum(abs(y-x)>(0.1*y)))}
print(mmetric(y,x,metric=myerror))
### binary classification
y=factor(c("a","a","b","b"))
x=factor(c("a","b","b","b"))
print(mmetric(y,x,"CONF"))
print(mmetric(y,x,"ACC"))
print(metrics(y,x))
px=matrix(nrow=4,ncol=2)
px[1,]=c(0.7,0.3)
px[2,]=c(0.4,0.6)
px[3,]=c(0.7,0.3)
px[4,]=c(0.3,0.7)
print(px)
print(mmetric(y,px,"CONF"))
print(mmetric(y,px,"ACC"))
print(mmetric(y,px,"CONF",D=0.7,TC=2))
print(metrics(y,px,D=0.7,TC=2))
px2=px[,2]
print(px2)
print(mmetric(y,px,"CONF"))
print(mmetric(y,px2,"CONF",D=0.7,TC=2))
print(mmetric(y,px,"AUC"))
print(mmetric(y,px2,"AUC"))
print(mmetric(y,px2,"AUC",TC=2))
### multi-class classification
data(iris)
M=mining(Species~.,iris,model="dt",Runs=2)
print(mmetric(M,metric="ACC",TC=2,D=0.7))
print(mmetric(M,metric="CONF",TC=2,D=0.7))
print(mmetric(M,metric="AUC",TC=3))
print(mmetric(M,metric="AUC",TC=1))
print(mmetric(M,metric="TPR",TC=1))
print(mmetric(M,metric="TPRATFPR",TC=3,val=0.05))
print(mmetric(M,metric="NAUC",TC=3,val=0.05))
print(mmetric(M,metric="ALIFT",TC=3))
print(mmetric(M,metric="ALIFTATPERC",TC=3,val=0.1))
print(mmetric(M,metric="NALIFT",TC=3,val=0.1))
print(metrics(M,BRIER=TRUE,Run=1)) # several Run 1 classification metrics
print(metrics(M,BRIER=TRUE,Run=1,TC=3)) # several Run 1 TC=3 classification metrics
Run the code above in your browser using DataLab