### simple regression example
x1=rnorm(200,100,20); x2=rnorm(200,100,20)
y=0.7*sin(x1/(25*pi))+0.3*sin(x2/(25*pi))
M=mining(y~x1+x2,Runs=2,model="mlpe",search=2)
print(M)
print(mmetric(M,metric="MAE"))
### classification example (task="prob")
data(iris)
M=mining(Species~.,iris,Runs=10,method=c("kfold",3),model="dt")
print(mmetric(M,metric="CONF"))
print(mmetric(M,metric="AUC"))
print(meanint(mmetric(M,metric="AUC")))
mgraph(M,graph="ROC",TC=2,baseline=TRUE,Grid=10,leg="Versicolor",
main="versicolor ROC")
mgraph(M,graph="LIFT",TC=2,baseline=TRUE,Grid=10,leg="Versicolor",
main="Versicolor ROC")
M2=mining(Species~.,iris,Runs=10,method=c("kfold",3),model="svm")
L=vector("list",2)
L[[1]]=M;L[[2]]=M2
mgraph(L,graph="ROC",TC=2,baseline=TRUE,Grid=10,leg=c("DT","SVM"),main="ROC")
### regression example
data(sin1reg)
M=mining(y~.,data=sin1reg,Runs=3,method=c("holdout",2/3),model="mlpe",
search="heuristic5",mpar=c(50,3,"kfold",3,"MAE"),feature="sabs")
print(mmetric(M,metric="MAE"))
print(M$mpar)
cat("median H nodes:",medianminingpar(M)[1],"")
print(M$attributes)
mgraph(M,graph="RSC",Grid=10,main="sin1 MLPE scatter plot")
mgraph(M,graph="REP",Grid=10,main="sin1 MLPE scatter plot",sort=FALSE)
mgraph(M,graph="REC",Grid=10,main="sin1 MLPE REC")
mgraph(M,graph="IMP",Grid=10,main="input importances",xval=0.1,leg=names(sin1reg))
mgraph(M,graph="VEC",Grid=10,main="x1 VEC curve",xval=1,leg=names(sin1reg)[1])
### another classification example
data(iris)
M=mining(Species~.,data=iris,Runs=2,method=c("kfold",2),model="svm",
search="heuristic",mpar=c(NA,NA,"kfold",3,"AUC"),feature="s")
print(mmetric(M,metric="AUC",TC=2))
mgraph(M,graph="ROC",TC=2,baseline=TRUE,Grid=10,leg="SVM",main="ROC",intbar=FALSE)
mgraph(M,graph="IMP",TC=2,Grid=10,main="input importances",xval=0.1,
leg=names(iris),axis=1)
mgraph(M,graph="VEC",TC=2,Grid=10,main="Petal.Width VEC curve",
data=iris,xval=4)
Run the code above in your browser using DataLab