Last chance! 50% off unlimited learning
Sale ends in
motifKernel(motifs, r = 1, annSpec = FALSE, distWeight = numeric(0),
normalized = TRUE, exact = TRUE, ignoreLower = TRUE, presence = FALSE)## S3 method for class 'MotifKernel':
getFeatureSpaceDimension(kernel, x)
annotationMetadata
). Default=FALSEgaussWeight
).
Default=NULLDNAStringSet
, RNAStringSet
,
AAStringSet
(or as BioVector
)MotifKernel
.of getDimFeatureSpace: dimension of the feature space as numeric value
exact=TRUE
getKernelMatrix
or via a direct call with the kernel object as shown in the examples below.kernelParameters-method
,
getKernelMatrix
, getExRep
,
spectrumKernel
, mismatchKernel
,
gappyPairKernel
## instead of user provided sequences in XStringSet format
## for this example a set of DNA sequences is created
## RNA- or AA-sequences can be used as well with the motif kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))
names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")
## create the kernel object with the motif patterns
mot <- motifKernel(c("A[CG]T","C.G","G[^A][AT]"), normalized=FALSE)
## show details of kernel object
mot
## generate the kernel matrix with the kernel object
km <- mot(dnaseqs)
dim(km)
km
## alternative way to generate the kernel matrix
km <- getKernelMatrix(mot, dnaseqs)
## plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)
## generate rectangular kernel matrix
km <- mot(x=dnaseqs, selx=1:3, y=dnaseqs, sely=4:5)
dim(km)
km
Run the code above in your browser using DataLab