mqmscan(cross, cofactors=NULL, pheno.col = 1,
model=c("additive","dominance"), forceML=FALSE,
cofactor.significance=0.02, em.iter=1000,
window.size=25.0, step.size=5.0,
logtransform = FALSE, estimate.map = FALSE,
plot=FALSE, verbose=FALSE, outputmarkers=TRUE,
multicore=TRUE, batchsize=10, n.clusters=1, test.normality=FALSE,off.end=0
)
cross
. See read.cross
for details.mqmsetcofactors
on how-to manually set cofactors
for backward elimination. est.map
function in R/qtl.
This is because no map is returnemqmtestnormal
.MQM
- MQM description and referencesmqmscan
- Main MQM single trait analysismqmscanall
- Parallellized traits analysismqmaugment
- Augmentation routine for estimating missing datamqmautocofactors
- Set cofactors using marker densitymqmsetcofactors
- Set cofactors at fixed locationsmqmpermutation
- Estimate significance levelsscanone
- Single QTL scanning
% -----^^ inst/docs/Sources/MQM/mqm/standard_seealso.txt ^^-----data(map10) # Genetic map modeled after mouse
# simulate a cross (autosomes 1-10)
qtl <- c(3,15,1,0) # QTL model: chr, pos'n, add've & dom effects
cross <- sim.cross(map10[1:10],qtl,n=100,missing.prob=0.01)
# MQM
crossaug <- mqmaugment(cross) # Augmentation
cat(crossaug$mqm$Nind,'real individuals retained in dataset',
crossaug$mqm$Naug,'individuals augmented
')
result <- mqmscan(crossaug) # Scan
# show LOD interval of the QTL on chr 3
lodint(result,chr=3)
Run the code above in your browser using DataLab