The model formulation and computational methods are described in
Lindstrom, M.J. and Bates, D.M. (1990). The variance-covariance
parametrizations are described in Pinheiro, J.C. and Bates., D.M.
(1996). The different correlation structures available for the
correlation
argument are described in Box, G.E.P., Jenkins,
G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup,
W.W., and Wolfinger, R.D. (1996), and Venables, W.N. and Ripley,
B.D. (1997). The use of variance functions for linear and nonlinear
mixed effects models is presented in detail in Davidian, M. and
Giltinan, D.M. (1995). Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series
Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models
for Repeated Measurement Data", Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for
Longitudinal Data", Biometrics, 38, 963-974.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996)
"SAS Systems for Mixed Models", SAS Institute.
Lindstrom, M.J. and Bates, D.M. (1990) "Nonlinear Mixed Effects Models
for Repeated Measures Data", Biometrics, 46, 673-687.
Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained
Parametrizations for Variance-Covariance Matrices", Statistics and
Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) "Modern Applied Statistics with
S-plus", 2nd Edition, Springer-Verlag.