The function solves the score function for coefficients of the marginal likelihood by using Gauss-Hermite quadrature (e.g., Hedeker; 1994). Random effects are predicted by their expectation (see Hartzl et al.; 2001). Standard deviations of parameter estimates are, by default, based on the expected Fisher-information matrix.
cumulative(link = c("logit", "probit", "cauchy"))
adjacent(link = "logit")
baseline(link = "logit")olmm(formula, data, family = cumulative(),
weights, subset, na.action,
offset, contrasts, control = olmm_control(), ...)
y ~ ce(x1) + ge(x2) +re(1 + ge(w2) | id)
where ce(x1)
specifies that the predictor x1
has a
category-specific i.e. non-propor
formula
. By default the variables are taken from the
environment from which olmm
is called.family.olmm
object produced by
cumulative
, adjacent
or baseline
.control
.family.olmm
. The "call"
).olmm_control
produced by
family.olmm
that specifies
that family of the fitted model.coefficients
slot are restricted to an initial value
at the estimation."list"
). The three implemented families are defined as follows:
link = "logit"
,
the logit of the sum of probabilities of lower
categories. clmm
of cumlogitRE
of package nplmt
of package DPolmm
of package lcmm
of package MCMCglmm
of package sabre
of package OrdinalBoost
of package
The implementation adopts functions of the packages
Tutz, G. and Hennevogl W. (1996). Random effects in ordinal regression models, Computational Statistics & Data Analysis 22 (5): 537--557
Tutz, G. (2012). Regression for Categorical Data, Cambridge Series in Statistical and Probabilistic Mathematics.
Frederick Novomestky (2012). matrixcalc: Collection of functions for
matrix calculations. R package version 1.0-3. URL
Gordon Smyth, Yifang Hu, Peter Dunn, Belinda Phipson and Yunshun Chen
(2014). statmod: Statistical Modeling. R package version 1.4.20.
URL
## ------------------------------------------------------------------- #
## Example 1: Schizophrenia
##
## Estimating the cumulative mixed models of
## Agresti (2010) chapters 10.3.1
## ------------------------------------------------------------------- #
data(schizo)
model.10.3.1 <-
olmm(imps79o ~ tx + sqrt(week) + tx * sqrt(week) + re(1|id),
data = schizo, family = cumulative())
summary(model.10.3.1)
## ------------------------------------------------------------------- #
## Example 2: Movie critics
##
## Estimating three of several adjacent-categories
## mixed models of Hartzl et. al. (2001)
## ------------------------------------------------------------------- #
data(movie)
## model with category-specific effects for "review"
model.24.1 <- olmm(critic ~ ce(review) + re(1|movie, intercept = "ce"),
data = movie, family = adjacent())
summary(model.24.1)
Run the code above in your browser using DataLab