Learn R Programming

Topolow: Force-Directed Euclidean Embedding of Dissimilarity Data (Version 2)

Overview

[Changes from version 1 and migration: https://github.com/omid-arhami/topolow/blob/main/NEWS.md]

topolow is an R package that implements a novel, physics-inspired algorithm for Euclidean embedding of potentially non-metric, sparse, and noisy dissimilarity data. The algorithm converts dissimilarity matrices into valid Euclidean coordinate systems, making the data compatible with standard statistical and machine learning tools like PCA, clustering, and regression.

The Problem: Many datasets contain dissimilarity measurements that violate metric axioms (symmetry, triangle inequality) or are highly sparse with missing values. Standard methods like Multidimensional Scaling (MDS) struggle with such data, leading to poor embeddings or complete failure.

The Solution: Topolow uses a physics-inspired approach that models objects as particles connected by springs (for known dissimilarities) and repulsive forces (for missing pairs). This gradient-free optimization is robust to local optima and handles non-metric data naturally.

Key Advantages

  • Handles non-metric data: Works with dissimilarities that violate metric axioms
  • Superior performance on sparse data: Effectively processes datasets with >95% missing values
  • Calculates antigenic velocity vectors (biology): Measures the rate and direction of viral evolution, offering early warnings of lineage replacements.
  • Robust optimization: Gradient-free algorithm avoids local optima
  • Statistical foundation: Maximum likelihood estimation under Laplace error model
  • Automatic parameter optimization: Determines optimal dimensions and parameters through cross-validation
  • Handles censored data: Properly incorporates threshold measurements (e.g., "<1", ">64")
  • Network-based error dampening: Reduces experimental noise through interconnected force system
  • Complete positioning: Maps all objects regardless of data sparsity

Installation

From CRAN

install.packages("topolow")

From GitHub

# Install devtools if needed
if (!require("devtools")) install.packages("devtools")

# Install topolow
devtools::install_github("omid-arhami/topolow")

Quick Start

Simple Example: Embedding 5 Points

Let's embed 4 points with known coordinates to validate the algorithm:

library(topolow)

# Known coordinates:
# S1 at (0,0), S2 at (3,0), S3 at (4,4), V1 at (2,2), V2 at (0,4)
# We'll provide some distances and let Topolow infer the missing ones
coordinates <- data.frame(
  point = c("S1", "S2", "S3", "V1", "V2"),
  x = c(0, 3, 4, 2, 0),
  y = c(0, 0, 4, 2, 4)
)
# Create a matrix with just the x,y coordinates for distance calculation
coord_matrix <- as.matrix(coordinates[, c("x", "y")])
rownames(coord_matrix) <- coordinates$point
# Calculate the distance matrix using Euclidean distance
dist_mat <- as.matrix(dist(coord_matrix))
# Remove a known distance to see if topolow predicts it accurately
dist_mat["V1", "V2"] <- NA
dist_mat["V2", "V1"] <- NA

# Run Topolow (manual parameters for quick demo)
result <- euclidean_embedding(
  dissimilarity_matrix = dist_mat,
  ndim = 2,
  mapping_max_iter = 1000,
  k0 = 5, 
  cooling_rate = 0.03, 
  c_repulsion = 0.7,
  verbose = TRUE
)

# Check results
print("Original matrix:")
print(dist_mat)
print("Estimated distances:")
print(result$est_distances)

# The missing distance V1-V2 should be approximately 2.83

Automatic Optimization with Euclidify

For real applications, use Euclidify() which automatically optimizes all parameters:

# Using automatic parameter optimization
result_auto <- Euclidify(
  dissimilarity_matrix = dist_mat,
  ndim_range = c(2, 4),
  output_dir = tempdir(),  # Required for optimization files
  n_initial_samples = 50,  # Reduced for quick demo
  n_adaptive_samples = 200,
  folds = 4,
  verbose = "standard"
)

# Extract optimized distances
est_dist <- result_auto$est_distances
print(est_dist)

# View optimal parameters found
print(result_auto$optimal_params)

Applications and Examples

1. Antigenic Mapping: Viral Evolution with Temporal Visualization

For immunologists studying viral evolution and vaccine effectiveness, Topolow can generate insightful visualizations. A key feature for this application is the calculation of antigenic velocity vectors, which show the rate and direction of antigenic drift for each virus against its recent predecessors. These vectors can reveal evolutionary trends and highlight potential vaccine-escape variants by revealing fast movements.

# Example: H3N2 Influenza A antigenic evolution with temporal mapping and velocity vectors

# Create a more comprehensive antigenic dataset with temporal information
antigen_data <- data.frame(
  virus = c("A/H3N2/HK/1968", "A/H3N2/EN/1972", "A/H3N2/VI/1975", "A/H3N2/TX/1977", 
            "A/H3N2/BK/1979", "A/H3N2/SI/1987", "A/H3N2/BE/1989", "A/H3N2/BE/1992",
            "A/H3N2/WU/1995", "A/H3N2/SY/1997", "A/H3N2/FU/2002", "A/H3N2/WI/2005"),
  serum = rep(c("anti-HK68/1968", "anti-EN72/1972", "anti-VI75/1975", "anti-TX77/1977", "anti-BK79/1979", 
                "anti-SI87/1987"), each = 12),
  titer = c(2560, 1280, 640, 320, 160, 80, 40, "<40", "<40", "<40", "<40", "<40",
            640, 2560, 1280, 640, 320, 160, 80, 40, "<40", "<40", "<40", "<40",
            320, 640, 2560, 1280, 640, 320, 160, 80, 40, "<40", "<40", "<40",
            160, 320, 640, 2560, 1280, 640, 320, 160, 80, 40, "<40", "<40",
            80, 160, 320, 640, 2560, 1280, 640, 320, 160, 80, 40, "<40",
            "<40", 80, 160, 320, 640, 2560, 1280, 640, 320, 160, 80, 40),
  year = rep(c(1968, 1972, 1975, 1977, 1979, 1987, 1989, 1992, 1995, 1997, 2002, 2005), 6)
)

# Convert titers to dissimilarity matrix
results <- process_antigenic_data(
  data = antigen_data,
  antigen_col = "virus",
  serum_col = "serum", 
  value_col = "titer",
  is_similarity = TRUE,  # Titers are similarities
  scale_factor = 10      # Base dilution factor of HI assay
)
antigenic_matrix <- results$matrix

# Create antigenic map with temporal information
antigenic_map <- Euclidify(
  dissimilarity_matrix = antigenic_matrix,
  ndim_range = c(3, 6),
  folds = 5,
  output_dir = tempdir(),
  verbose = "standard"
)

# Prepare data for temporal visualization
positions_df <- data.frame(
  V1 = antigenic_map$positions[, 1],
  V2 = antigenic_map$positions[, 2],
  name = rownames(antigenic_map$positions),
  year = as.numeric(sub(".*/([0-9]+).*", "\\1", rownames(antigenic_map$positions))),
  antigen = grepl("^V/", rownames(antigenic_map$positions)),
  antiserum = grepl("^S/", rownames(antigenic_map$positions))
)
  

# Configure visualization aesthetics
aesthetic_config <- new_aesthetic_config(
  point_size = 3.0,
  point_alpha = 0.8,
  point_shapes = c(antigen = 16, antiserum = 5),  # Circle for antigens, diamond for sera
  gradient_colors = list(low = "blue", high = "red"),
  show_labels = TRUE,
  show_title = TRUE,
  title_size = 14,
  axis_text_size = 11,
  show_legend = TRUE,
  legend_position = "right",
  arrow_alpha = 0.7
)

layout_config <- new_layout_config(
  width = 10,
  height = 8,
  save_plot = FALSE,
  arrow_plot_threshold = 0.15,  # Show arrows for significant movements
  show_grid = TRUE,
  grid_type = "major"
)

annotation_config <- new_annotation_config(
  notable_points = c("V/A/H3N2/HK/1968", "V/A/H3N2/FU/2002", "V/A/H3N2/WI/2005")
)

# Create temporal antigenic map with velocity vectors
temporal_plot <- plot_temporal_mapping(
  df_coords = positions_df,
  ndim = 3,
  draw_arrows = TRUE,           # Enable velocity vectors
  annotate_arrows = TRUE,       # Label arrows with strain names
  sigma_t = 2.0,               # Temporal bandwidth (years)
  sigma_x = 1.5,               # Spatial bandwidth (antigenic units)
  aesthetic_config = aesthetic_config,
  layout_config = layout_config,
  annotation_config = annotation_config,
  output_dir = tempdir()
)

print(temporal_plot)

# Create clustered view by antigenic epoch
positions_df$cluster <- cut(positions_df$year, 
                           breaks = c(1965, 1975, 1985, 1995, 2010),
                           labels = c("Pre-1975", "1975-1985", "1985-1995", "Post-1995"))

# Visualize antigenic clusters with evolutionary relationships
cluster_plot <- plot_cluster_mapping(
  df_coords = positions_df,
  ndim = 3,
  draw_arrows = TRUE,
  show_one_arrow_per_cluster = TRUE,  # One representative arrow per cluster
  aesthetic_config = aesthetic_config,
  layout_config = layout_config,
  annotation_config = annotation_config
)

print(cluster_plot)

# Generate 3D visualization for enhanced perspective
if (requireNamespace("rgl", quietly = TRUE)) {
  # Interactive 3D antigenic map
  plot_3d <- plot_3d_mapping(
    positions_df,
    ndim = 3,
    aesthetic_config = aesthetic_config,
  layout_config = layout_config
  )
  
  cat("3D antigenic map created. Use mouse to rotate and zoom.\n")
}

2. General Data Science: Customer Similarity

# Example: Customer behavior dissimilarity
customer_data <- data.frame(
  customer = rep(paste0("Cust", 1:5), each = 5),
  product = rep(paste0("Prod", 1:5), 5),
  dissimilarity = c(0, 2.1, 3.5, 1.8, 4.2,
                   2.1, 0, 1.9, 3.1, 2.8,
                   3.5, 1.9, 0, 2.4, 3.7,
                   1.8, 3.1, 2.4, 0, 2.9,
                   4.2, 2.8, 3.7, 2.9, 0)
)

# Convert to matrix format
dissim_matrix <- list_to_matrix(
  data = customer_data,
  object_col = "customer",
  reference_col = "product", 
  value_col = "dissimilarity",
  is_similarity = FALSE
)

# Embed in Euclidean space
customer_map <- Euclidify(
  dissimilarity_matrix = dissim_matrix,
  output_dir = tempdir(),
  ndim_range = c(2, 4),
  verbose = "standard"
)

plot(customer_map$positions, main = "Customer Behavior Map")
text(customer_map$positions[,1] + jitter(rep(0, nrow(customer_map$positions)), amount = 0.2), 
     customer_map$positions[,2] + jitter(rep(0, nrow(customer_map$positions)), amount = 0.2), 
     labels = rownames(customer_map$positions), pos = 3, cex = 0.5)

3. Handling Large and Sparse Data

# Example: Large symmetric sparse matrix with realistic structure
set.seed(12345)  # For reproducibility

# Generate a large, realistic sparse dissimilarity matrix
n_objects <- 50
object_names <- paste0("Object_", sprintf("%02d", 1:n_objects))

# Create base coordinates in 3D space with clustered structure
cluster_centers <- matrix(c(
  c(0, 0, 0),      # Cluster 1
  c(5, 0, 0),      # Cluster 2  
  c(0, 5, 0),      # Cluster 3
  c(5, 5, 0),      # Cluster 4
  c(2.5, 2.5, 3)   # Cluster 5
), ncol = 3, byrow = TRUE)

# Assign objects to clusters
cluster_assignments <- sample(1:5, n_objects, replace = TRUE, 
                             prob = c(0.25, 0.25, 0.20, 0.20, 0.10))

# Generate coordinates with cluster structure + noise
true_coordinates <- matrix(0, n_objects, 3)
for(i in 1:n_objects) {
  cluster_id <- cluster_assignments[i]
  true_coordinates[i, ] <- cluster_centers[cluster_id, ] + rnorm(3, 0, 0.8)
}

rownames(true_coordinates) <- object_names

# Calculate complete Euclidean distance matrix
complete_distances <- as.matrix(dist(true_coordinates))

# Add realistic measurement noise (5% coefficient of variation)
noisy_distances <- complete_distances * (1 + rnorm(n_objects^2, 0, 0.05))
noisy_distances <- pmax(noisy_distances, 0.1)  # Minimum distance threshold

# Make symmetric and zero diagonal
noisy_distances[lower.tri(noisy_distances)] <- t(noisy_distances)[lower.tri(noisy_distances)]
diag(noisy_distances) <- 0

# Introduce structured sparsity (85% missing data)
# Objects in the same cluster are more likely to have measurements
total_pairs <- n_objects * (n_objects - 1) / 2
target_missing_pairs <- round(total_pairs * 0.85)  # 85% sparsity

# Generate upper triangular indices for sampling
upper_tri_indices <- which(upper.tri(noisy_distances), arr.ind = TRUE)

# Create sampling weights: higher probability for within-cluster pairs
sampling_weights <- numeric(nrow(upper_tri_indices))
for(k in 1:nrow(upper_tri_indices)) {
  i <- upper_tri_indices[k, 1]
  j <- upper_tri_indices[k, 2]
  if(cluster_assignments[i] == cluster_assignments[j]) {
    sampling_weights[k] <- 0.3  # Lower chance of being missing (within cluster)
  } else {
    sampling_weights[k] <- 1.0  # Higher chance of being missing (between clusters)
  }
}

# Sample pairs to remove
missing_pair_indices <- sample(
  nrow(upper_tri_indices), 
  target_missing_pairs, 
  prob = sampling_weights
)

# Create sparse matrix
sparse_matrix <- noisy_distances
sparse_matrix[upper_tri_indices[missing_pair_indices, ]] <- NA
sparse_matrix[upper_tri_indices[missing_pair_indices, c(2,1)]] <- NA

rownames(sparse_matrix) <- colnames(sparse_matrix) <- object_names

# Calculate actual sparsity
actual_sparsity <- sum(is.na(sparse_matrix)) / (n_objects * (n_objects-1)) * 100

cat("=== SPARSE DATA EXAMPLE ===\n")
cat("Generated sparse dissimilarity matrix:\n")
cat("- Matrix size:", n_objects, "x", n_objects, "objects\n")
cat("- Actual sparsity:", round(actual_sparsity, 1), "% missing data\n")
cat("- Clustering structure: 5 clusters with", table(cluster_assignments), "objects each\n")
cat("- Noise level: 5% coefficient of variation\n")
cat("- Within-cluster connectivity preserved for realism\n")

cat("=== Check the connectivity of the data graph ===\n")
# Network structure analysis to make sure there are no separate islands in the data
network_analysis <- analyze_network_structure(sparse_matrix)
network_plot <- plot_network_structure(network_analysis)
print(network_plot)

# Demonstrate Topolow's superior sparse data handling
cat("\n=== EMBEDDING SPARSE DATA ===\n")

# Topolow embedding with automatic optimization
sparse_result <- Euclidify(
  dissimilarity_matrix = sparse_matrix,
  ndim_range = c(2, 8),
  output_dir = tempdir(),
  n_initial_samples = 50,
  n_adaptive_samples = 150,
  folds = 20,
  verbose = "standard"
)
print(sparse_result$optimal_params)

# Evaluate embedding quality by visualizing the results 
# and coloring by original cluster for validation
plot_colors <- rainbow(5)[cluster_assignments]

plot(sparse_result$positions[, 1:2], 
     col = plot_colors, 
     pch = 19, 
     cex = 1.2,
     main = paste("Topolow Embedding of Sparse Data\n", 
                 round(actual_sparsity, 1), "% Missing Values"),
     xlab = "Dimension 1", 
     ylab = "Dimension 2")

legend("topleft", 
       legend = paste("Cluster", 1:5), 
       col = rainbow(5), 
       pch = 19, 
       cex = 0.6)

# Add text labels for some points
text(sparse_result$positions[1:10, 1:2], 
     labels = object_names[1:10], 
     pos = 3, 
     cex = 0.6)

How Topolow Works

Topolow employs a novel physical model where:

  1. Objects as particles: Each object becomes a particle in N-dimensional space
  2. Spring forces: Pairs with known dissimilarities are connected by springs with rest lengths equal to the measured dissimilarity
  3. Repulsive forces: Pairs without measurements apply repulsive forces, preventing particle collapse
  4. Mass-weighted motion: Each particle has effective mass proportional to its number of measurements
  5. Statistical foundation: Minimizes Mean Absolute Error, equivalent to Maximum Likelihood Estimation under Laplace error model
  6. Gradient-free optimization: Sequential pairwise updates avoid local optima common in gradient-based methods
  7. Cooling schedule: Force constants gradually decrease, allowing fine-scale adjustments

Key Distinction from MDS: While MDS methods impute missing values and calculate eigenvalues or gradient vectors, Topolow works directly with the structure in the data and uses physics-inspired forces for robust optimization.

Features

Core Algorithm

  • Physics-inspired optimization: Spring-mass system for robust positioning
  • Gradient-free: Avoids local optima through stochastic pairwise interactions
  • Non-metric compatibility: Handles data violating metric axioms
  • Sparse data handling: No imputation required for missing values
  • Censored data support: Handles threshold indicators (<, >) as constraints

Parameter Optimization

  • Automatic dimension selection: Likelihood-based optimal dimensionality
  • Adaptive Monte Carlo: Parameter optimization focusing on high-likelihood regions
  • Cross-validation: Built-in k-fold validation for robust parameter estimates

Practical Features

  • Parallel processing: Multi-core support for large datasets
  • Convergence diagnostics: Automatic convergence detection and monitoring
  • Flexible input formats: Handles matrices, data frames, similarity/dissimilarity data
  • Comprehensive visualization: 2D, 3D, temporal, and cluster-based plotting tools, including antigenic velocity vectors to track evolutionary drift.

Input Data Formats

Topolow accepts data in multiple formats:

1. Matrix Format

# Direct dissimilarity matrix
dist_matrix <- matrix(c(0, 1.2, 2.1, 1.2, 0, 1.8, 2.1, 1.8, 0), nrow=3)

2. Long Format (List)

# Convert long format to matrix
long_data <- data.frame(
  object = c("A", "B", "C"),
  reference = c("X", "Y", "Z"), 
  value = c(1.2, 1.8, 2.1)
)
matrix_data <- list_to_matrix(long_data, "object", "reference", "value")

3. Threshold Measurements

# Data with detection limits
threshold_matrix <- matrix(c(0, ">64", "<40", ">64", 0, "20", "<40", "20", 0), nrow=3)

Performance Advantages

Based on empirical evaluations in the Bioinformatics paper (Arhami and Rohani, 2025 https://doi.org/10.1093/bioinformatics/btaf372):

  • 50-1000% improved accuracy over MDS on simulated datasets with varying missingness
  • 56% improvement on dengue virus antigenic data
  • 41% improvement on HIV neutralization data
  • Orders of magnitude better stability across multiple runs
  • Superior performance maintained even at 90% data sparsity
  • Robust performance across wide parameter ranges

Applications

Immunology and Virology

  • Antigenic cartography: Map viral evolution and vaccine effectiveness
  • Track evolutionary drift: Use antigenic velocity vectors to identify fast-evolving samples and potential vaccine escape variants
  • Immune repertoire analysis: Visualize antibody/TCR similarity
  • Vaccine design: Identify antigenic variants and coverage gaps
  • Pathogen surveillance: Track emerging variants
  • Cross-reactivity analysis: Understand immune cross-protection

General Data Science

  • Customer segmentation: Embed behavioral dissimilarity data
  • Recommendation systems: Map user-item preference dissimilarities
  • Network analysis: Embed graph distances into Euclidean space
  • Dimensionality reduction: Robust alternative to PCA for non-Euclidean data
  • Anomaly detection: Identify outliers in dissimilarity space

Bioinformatics and Computational Biology

  • Protein structure analysis: Embed structural dissimilarity measures
  • Phylogenetic analysis: Visualize evolutionary distances
  • Gene expression: Map correlation-based dissimilarities
  • Drug discovery: Embed molecular dissimilarity for compound analysis

Other Domains

  • Psychology: Embed perceptual or cognitive dissimilarity data
  • Marketing: Map brand perception and consumer preferences
  • Geographic analysis: Handle incomplete distance data
  • Social network analysis: Embed relationship dissimilarities

Algorithm Parameters

Key parameters of euclidean_embedding() for manual optimization:

  • ndim: Number of dimensions (typically 2-10)
  • k0: Initial spring constant (typical range: 0.1-30)
  • cooling_rate: Parameter decay rate (typical range: 0.0001-0.05)
  • c_repulsion: Repulsion constant (typical range: 0.0001-0.4)

Recommendation: Use Euclidify() for automatic parameter optimization if you are not willing to invest time on manual tuning and investigation.

Comparison with Other Methods

MethodNon-metric CompatibleMissing DataSparse DataGradient-freeStability
Topolow
Classical MDS❌ (requires imputation)
Iterative MDS❌ (requires imputation)
t-SNE
UMAP⚠️

Using on HPC or SLURM Clusters

topolow can be used on a single HPC system and leverage the larger number of cores by increasing max_cores parameters. Distributed processing using SLURM is supported in versions prior to 1.0.0.

Optional Dependencies

For 3D visualization capabilities, install the rgl package:

install.packages("rgl")

Note for macOS users: The rgl package requires XQuartz. Download from https://www.xquartz.org/, install, and restart your computer.

Documentation

Full documentation available at:

# View documentation for specific functions
?Euclidify
?euclidean_embedding
?initial_parameter_optimization

# Package overview
help(package = "topolow")

Citation

If you use this package, please cite either the original introduction of topolow (with applications in the context of viral evolution) :

Omid Arhami, Pejman Rohani, Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays, Bioinformatics, Volume 41, Issue 7, July 2025, btaf372, https://doi.org/10.1093/bioinformatics/btaf372

@article{10.1093/bioinformatics/btaf372,
    author = {Arhami, Omid and Rohani, Pejman},
    title = {Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays},
    journal = {Bioinformatics},
    volume = {41},
    number = {7},
    pages = {btaf372},
    year = {2025},
    month = {06},
    abstract = {Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95\% of possible measurements could be missing in large-scale studies.We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56\% and 41\% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow.},
    issn = {1367-4811},
    doi = {10.1093/bioinformatics/btaf372},
    url = {https://doi.org/10.1093/bioinformatics/btaf372},
    eprint = {https://academic.oup.com/bioinformatics/article-pdf/41/7/btaf372/63582086/btaf372.pdf},
}

Or, the pre-print explaining mathematical properties of the algorithm, Euclidean embedding, and evaluations:

Omid Arhami, Pejman Rohani, Topolow: Force-Directed Euclidean Embedding of Dissimilarity Data with Robustness Against Non-Metricity and Sparsity, arXiv:2508.01733, https://doi.org/10.48550/arXiv.2508.01733

@misc{arhami2025topolowforcedirectedeuclideanembedding,
      title={Topolow: Force-Directed Euclidean Embedding of Dissimilarity Data with Robustness Against Non-Metricity and Sparsity}, 
      author={Omid Arhami and Pejman Rohani},
      year={2025},
      eprint={2508.01733},
      archivePrefix={arXiv},
      primaryClass={cs.CG},
      doi={10.48550/arXiv.2508.01733},
      url={https://arxiv.org/abs/2508.01733}, 
}

Software DOI:

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

License

This project is distributed under BSD-3-Clause license YEAR: 2025 COPYRIGHT HOLDER: Omid Arhami

Contact

Copy Link

Version

Install

install.packages('topolow')

Version

2.0.1

License

BSD_3_clause + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Omid Arhami

Last Published

August 31st, 2025

Functions in topolow (2.0.1)

initial_parameter_optimization

Parameter Space Sampling and Optimization Functions for topolow
likelihood_function

Evaluate a Parameter Set with Cross-Validation
log_transform_parameters

Log Transform Parameter Samples
get_grid

Create Grid Around Maximum Likelihood Estimate (Internal)
list_to_matrix

topolow Data Preprocessing Functions
extract_numeric_values

Utility functions for the topolow package Extract Numeric Values from Mixed Data
generate_kde_samples

Generate New Parameter Samples Using KDE
new_aesthetic_config

Plot Aesthetic Configuration Class
make_interactive

Create Interactive Plot
plot.parameter_sensitivity

Plot Parameter Sensitivity Analysis
hiv_titers

HIV Neutralization Assay Data
plot.profile_likelihood

Plot Method for profile_likelihood Objects
new_layout_config

Plot Layout Configuration Class
new_dim_reduction_config

Dimension Reduction Configuration Class
hiv_viruses

HIV Virus Metadata
plot.topolow_convergence

Plot Method for topolow Convergence Diagnostics
ggsave_white_bg

Save ggplot with white background
parameter_sensitivity_analysis

Parameter Sensitivity Analysis
new_annotation_config

Visualization functions for the topolow package Plot Annotation Configuration Class
print.topolow_convergence

Print Method for topolow Convergence Diagnostics
plot_3d_mapping

Create 3D Visualization
h3n2_data

H3N2 Influenza HI Assay Data from Smith et al. 2004
print.topolow

Print method for topolow objects
profile_likelihood_result

S3 Constructor for Profile Likelihood Results
profile_likelihood

Profile Likelihood Analysis
process_antigenic_data

Process Raw Antigenic Assay Data
print.topolow_diagnostics

Print Method for topolow parameter estimation Diagnostics
print.parameter_sensitivity

Print Method for Parameter Sensitivity Objects
save_plot

Save Plot to File
print.profile_likelihood

Print Method for profile_likelihood Objects
run_adaptive_sampling

Performs adaptive Monte Carlo sampling
reduce_dimensions

Perform Dimension Reduction
summary.topolow

Summary method for topolow objects
plot.topolow_diagnostics

Plot Method for topolow parameter estimation Diagnostics
plot_temporal_mapping

Create Temporal Mapping Plot
scatterplot_fitted_vs_true

Plot Fitted vs. True Dissimilarities
plot_network_structure

Plot Network Structure
titers_list_to_matrix

Convert Long Format Data to Distance Matrix
topolow-package

Algorithm Comparison Helper Functions
plot_cluster_mapping

Create Clustered Mapping Plots
symmetric_to_nonsymmetric_matrix

Convert distance matrix to assay panel format
table_to_matrix

Convert Table Format Data to Dissimilarity Matrix
weighted_kde

Weighted Kernel Density Estimation
scale_to_original_distances

Scale Reduced Dimensions to Match Original Distances
vectorized_process_distance_matrix

TopoLow Core Functions Vectorized Processing of Dissimilarity Matrix for Convergence Error Calculations
validate_topolow_df

Validate Input Data Frame
calculate_prediction_interval

Calculate Prediction Interval for Dissimilarity Estimates
calculate_weighted_marginals

Calculate Weighted Marginal Distributions
clean_data

Clean Data by Removing MAD-based Outliers
calculate_diagnostics

Calculate MCMC-style Diagnostics for Sampling Chains
analyze_network_structure

Analyze Network Structure
adaptive_MC_sampling

Perform Adaptive Monte Carlo Sampling (Internal)
Euclidify

Automatic Euclidean Embedding with Parameter Optimization
check_gaussian_convergence

Model Diagnostics and Convergence Testing Check Multivariate Gaussian Convergence
example_positions

Example Antigenic Mapping Data
create_diagnostic_plots

Create Diagnostic Plots for Multiple Sampling Chains
create_topolow_map

Main TopoLow algorithm implementation (DEPRECATED)
coordinates_to_matrix

Convert Coordinates to a Distance Matrix
create_cv_folds

Create Cross-Validation Folds for a Dissimilarity Matrix
color_palettes

Color Palettes
create_base_theme

Create Base Theme
error_calculator_comparison

Error calculation and validation metrics for topolow Calculate Comprehensive Error Metrics
euclidean_embedding

Main topolow algorithm implementation
denv_data

Dengue Virus (DENV) Titer Data
detect_outliers_mad

Detect Outliers Using Median Absolute Deviation