# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species", p = p_coords, a = bg_coords,
env = predictors, categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data, test = 0.2, only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxent", data = train, fc = "l")
# Define the hyperparameters to test
h <- list(reg = 1:3, fc = c("lqp", "lqph", "lh"), iter = seq(300, 700, 100))
# Run the function using as metric the AUC
output <- optimizeModel(model, hypers = h, metric = "auc", test = test,
seed = 25)
output@results
output@models
output@models[[1]] # Best model
# }
Run the code above in your browser using DataLab