# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species", p = p_coords, a = bg_coords,
env = predictors, categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data, test = 0.2, only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet", data = train, fc = "l")
# Define the hyperparameters to test
h <- list(reg = 1:2, fc = c("lqp", "lqph"))
# Run the function using the AUC as metric
output <- gridSearch(model, hypers = h, metric = "auc", test = test)
output@results
output@models
# Order rusults by highest test AUC
head(output@results[order(-output@results$test_AUC), ])
# Run the function using the AICc as metric and without saving the trained
# models, helpful when numerous hyperparameters are tested to avoid memory
# problems
output <- gridSearch(model, hypers = h, metric = "aicc", env = predictors,
save_models = FALSE)
output@results
# }
Run the code above in your browser using DataLab