outliers.thres.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.depth.trim(fdataobj,nb=200,smo=0.05,trim=0.01,
dfunc=depth.mode,...)
outliers.depth.pond(fdataobj,nb=200,smo=0.05,dfunc=depth.mode,...)
## S3 method for class 'outliers.pond':
quantile(x,dfunc=depth.mode,
nb=200,smo=0.05,ns=0.01,\dots)
## S3 method for class 'outliers.trim':
quantile(x,dfunc=depth.mode,trim=0.1,
nb=200,smo=0.05,ns=0.01,\dots)fdata class object.depth.mode.outliers.lrt). The threshold for outlier detection is given by the
outliers.thres.lrt.
Outlier detection in functional data by depth measures:
i.-outliers.depth.pond function weights the data according to depth.
ii.-outliers.depth.trim function uses trimmed data.
quantile.outliers.pond and quantile.outliers.trim functions provides the quantiles of the bootstrap samples for functional outlier detection by data ponderation amd trimmed data respectively. Bootstrap smoothing function (fdata.bootstrap with nb resamples) is applied to these weighted or trimmed data. If smo=0 smoothed bootstrap is not performed. The function returns a vector of size 1xnb with quantiles of the bootstrap samples.fdata.bootstrap, Depth.data(aemet)
nb=200
# NOT RUN
#out.trim<-outliers.depth.trim(aemet$temp,dfunc=depth.FM,nb=nb)
#plot(aemet$temp,col=1,lty=1)
#lines(aemet$temp[out.trim[[1]]],col=2)Run the code above in your browser using DataLab