Last chance! 50% off unlimited learning
Sale ends in
interaction2wt
. The main diagonal
displays boxplots for the main effects of each factor. The
off-diagonals show the interaction plots for each pair of factors.
The i,j
panel shows the same factors as the j,i
but with
the trace- and x-factor roles interchanged.panel.interaction2wt(x, y, subscripts,
responselab, trace.values,
factor.levels, factor.position,
fun = mean,
se,
type="l",
...,
box.ratio,
simple=FALSE,
simple.offset,
simple.scale,
simple.pch,
data.x,
col.by.row=TRUE,
key.in=NULL)
strip.interaction2wt(which.given, which.panel, var.name,
factor.levels, shingle.intervals,
strip.names = c(TRUE, TRUE), style = 1, ...)
mean
panel.intxplot
.
Missing, logical, or a numeric vector.
If se
is missing or FALSE
, or if simple
is
FALSE
, then standard errors are not plottedpanel.xyplot
.panel.bwplot.intermediate.hh
panel.bwplot.intermediate.hh
key
for the
trace-factor in each row of the display.
The most likely argument is x
, which is needed if the key is
not correctly placed. Use, for example, key.i
"position"
attribute of factor.TRUE
, then simple effects are to be displayed.interaction.positioned
for their use.simple.pch
is used only when
simple==TRUE
. If the argument simple.pch
is missing,
then the integers for the levdata.frame
containing factors from the input data.frameTRUE
(the default), simple
effects plots color the simple effects on the main diagonals in the same
color as the trace levels in their row. If FALSE
, then simple
effects are colored to match the x levels in theirstrip.default
strip.names=TRUE
style=1
interaction2wt
,
panel.bwplot.intermediate.hh
tmp <- data.frame(y=rnorm(48),
A=factor(rep(1:2, 24)),
B=factor(rep(rep(1:3, each=2), 8)),
C=factor(rep(rep(1:4, each=6), 2)))
interaction2wt(y ~ A+B+C, data=tmp,
key.in=list(x=-3), ## key.in is ignored by R
xlim=c(.4, 4.5))
interaction2wt(y ~ B+C, data=tmp, key.in=list(x=-2), xlim=c(.4, 4.5))
position(tmp$B) <- c(1, 2.4, 3.8)
interaction2wt(y ~ B+C, data=tmp, key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ B+C, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ C+B, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ B+C, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
simple.pch=list(C=c(16,17,18,19)),
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ C+B, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
simple.pch=list(C=c(16,17,18,19)),
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ C+B, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
simple.pch=list(A=c(1:2), B=c(3:5), C=c(16,17,18,19)),
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ C+B, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
simple.pch=list(A=c(1:2)),
key.in=list(x=-2), xlim=c(.4, 4.5))
interaction2wt(y ~ B+C, data=tmp, simple=TRUE,
simple.scale=list(B=.18, C=.27), box.ratio=.2,
simple.pch=list(B=c(16,17,18)),
key.in=list(x=-2), xlim=c(.4, 4.5),
se=TRUE)
Run the code above in your browser using DataLab