etaphi
returns a column vector with the entries
$${\bold{\eta}} = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^m (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$
The function phieta
returns a vector with the entries
$${\bold{\phi}} = \Bigl(\eta_1, \Bigl(\frac{\phi_i-\phi_{i-1}}{x_i-x_{i-1}}\Bigr)_{i=2}^m\Bigr).$$etaphi(x, eta)
phieta(x, phi)