Learn R Programming

logcondens (version 2.0.6)

reparametrizations: Changes Between Parametrizations

Description

Given a vector $(\phi_1, \ldots, \phi_m)$ representing the values of a piecewise linear concave function at $x_1, \ldots, x_m,$ etaphi returns a column vector with the entries $${\bold{\eta}} = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^m (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$ The function phieta returns a vector with the entries $${\bold{\phi}} = \Bigl(\eta_1, \Bigl(\frac{\phi_i-\phi_{i-1}}{x_i-x_{i-1}}\Bigr)_{i=2}^m\Bigr).$$

Usage

etaphi(x, eta)
phieta(x, phi)

Arguments

x
Vector of independent and identically distributed numbers, with strictly increasing entries.
eta
Vector with entries $\eta_i = \eta(x_i).$
phi
Vector with entries $\phi_i = \phi(x_i).$