Learn R Programming

fda.usc (version 1.1.0)

plot.fdata: Plot functional data: fdata.

Description

Plot object of class fdata.

Usage

## S3 method for class 'fdata':
plot(x, type, main, xlab, ylab,
mfrow = c(1, 1), time = 1,...)
## S3 method for class 'fdata':
lines(x,\dots)
## S3 method for class 'fdata':
title(x,main=NULL,xlab=NULL,ylab=NULL,rownames=NULL)

Arguments

x
fdata class object with:
  • "data": Forfdataclass object as curve (1d),"data"is amatrix(by default),data.frameorarrayof set cases with dimension (n
type
1-character string giving the type of plot desired. The following values are possible for fdata class object: "l" for lines (by default),"p" for points, , "o" for overplotted points and lines, "b", "c" for (empty if "c") points joined by line
main
an overall title for the plot: see title.
xlab
xlab title for x axis, as in plot.
ylab
ylab title for y axis, as in plot.
mfrow
A vector of the form c(nr, nc). Subsequent figures will be drawn in an nr-by-nc array on the device by rows (mfrow).
time
The time interval to suspend plot execution for, in seconds, see Sys.sleep.
rownames
Row names.
...
Further arguments passed to matplot function (for fdata class) or image, contour, persp

See Also

See Also as fdata

Examples

Run this code
# example for fdata class of 1 dimension (curve)
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-(sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
nc<-10
np<-length(f1)
tt=seq(0,1,len=101)
mdata<-matrix(NA,ncol=np,nrow=nc)
for (i in 1:nc) mdata[i,]<- (sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
fdataobj<-fdata(mdata,tt)
res=plot.fdata(fdataobj,type="l",col=gray(1:nrow(mdata)/nrow(mdata)))
lines(func.mean(fdataobj),col=3,lwd=2) #original curve

# example for fdata2d class of 2 dimension (surface)
t1 <- seq(0, 1, length= 51)
t2 <- seq(0, 1, length= 31)
z<-array(NA,dim=c(4,51,31))
for (i in 1:4) z[i,,] <- outer(t1, t2, function(a, b) (i*a)*(b)^i)
z.fdata<-fdata(z,list(t1,t2))
plot(z.fdata,time=2)
plot(z.fdata,mfrow=c(2,2),type="persp",theta=30)

Run the code above in your browser using DataLab