plotFit(x, ...)
"plotFit"(x, gene_id, plot_type = "barplot", order = TRUE, plot_full = TRUE, plot_main = TRUE, out_dir = NULL)
"plotFit"(x, gene_id, plot_type = "barplot", order = TRUE, plot_full = TRUE, plot_null = TRUE, plot_main = TRUE, out_dir = NULL)
"plotFit"(x, gene_id, snp_id, plot_type = "boxplot1", order = TRUE, plot_full = TRUE, plot_main = TRUE, out_dir = NULL)
"plotFit"(x, gene_id, snp_id, plot_type = "boxplot1", order = TRUE, plot_full = TRUE, plot_null = TRUE, plot_main = TRUE, out_dir = NULL)
dmDSfit
, dmDStest
or
dmSQTLfit
, dmSQTLtest
object."barplot"
, "boxplot1"
, "boxplot2"
,
"lineplot"
, "ribbonplot"
.paste0(out_dir, plot_name, ".pdf")
file. plot_name
depends
on type of a plot produced, for example, plot_name = "hist_features"
for histogram with number of features per gene. If NULL
,
the plot is returned as ggplot
object and can be further modified,
for example, using theme()
.snp_id
must
match gene_id
.data_dmDSdata
, data_dmSQTLdata
,
plotData
, plotDispersion
,
plotTest
###################################
### Differential splicing analysis
###################################
# If possible, use BPPARAM = BiocParallel::MulticoreParam() with more workers
d <- data_dmDSdata
### Filtering
# Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_samps_feature_prop = 0)
### Calculate dispersion
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())
### Fit full model proportions
d <- dmFit(d, BPPARAM = BiocParallel::SerialParam())
### Fit null model proportions and test for DS
d <- dmTest(d, BPPARAM = BiocParallel::SerialParam())
### Plot feature proportions for top DS gene
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
gene_id <- res$gene_id[1]
plotFit(d, gene_id = gene_id)
plotFit(d, gene_id = gene_id, plot_type = "lineplot")
plotFit(d, gene_id = gene_id, plot_type = "ribbonplot")
Run the code above in your browser using DataLab