Learn R Programming

BINCOR (version 0.2.0)

plot_ts: Plot time series

Description

The plot_ts function plot and compare the irregular and the binned time series. plot_ts has several parameters that are described in the following lines.

Usage

plot_ts(ts1, ts2, bints1, bints2, varnamets1="", varnamets2="", colts1=1, colts2=1, 
 colbints1=2, colbints2=2, ltyts1=1, ltyts2=1, ltybints1=2, ltybints2=2, 
 device="screen", Hfig, Wfig, Hpdf, Wpdf, resfig, ofilename)

Arguments

ts1, ts2

ts1 and ts2 are the unevenly spaced time series.

bints1, bints2

The bints1 and bints2 are the binned time series.

varnamets1, varnamets2

varnamets[1][2] are the names of the variables under study.

colts1, colts2

colts[1][2] are the colours for the time series (irregular) under study (by default both curves are in black).

colbints1, colbints2

colbints[1][2] are the colours of the binned time series (by default both curves are in red).

ltyts1, ltyts2

ltyts[1][2] are the type of lines to be plotted for the irregular time series (by default is 1, i.e., solid). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed.

ltybints1, ltybints2

ltybints[1][2] are the type of lines to be plotted for the binned time series (by default is 2, i.e., dashed). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed.

device

The type of the output device (by default the option is ``screen'', and the other options are ``jpg'', ``png'' and ``pdf'').

Hfig

The height for the plot in ``jpg'' or ``png'' format.

Wfig

The width for the plot in ``jpg'' or ``png'' format.

Hpdf

The height for the plot in ``pdf'' format.

Wpdf

The width for the plot in ``pdf'' format.

resfig

resfig is the plot resolution in 'ppi' (by default R does not record a resolution in the image file, except for BMP), an adequate value could be 150 ppi.

ofilename

The output filename for the plot.

Value

Output:

Output plot: screen or 'ofilename + .png, .jpg or .pdf'.

Details

The plot_ts function is used to plot the irregular vs. the binned time series and this function uses the native R function ``plot'' (package:graphics).

References

Polanco-Mart<U+00ED>nez, J.M., Medina-Elizalde, M.A., S<U+00E1>nchez Go<U+00F1>i, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced series. Ms. under review (second round).

Examples

Run this code
# NOT RUN {
 #####################################################################
 #::  Figure 1 (Polanco-Mart<U+00ED>nez et al. (2018), (mimeo)). 
 #####################################################################
 library("BINCOR") 

 #####################################################################
 #:: Loading the time series under analysis: example 1 (ENSO vs. NHSST) 
 #####################################################################
 data(ENSO) 
 data(NHSST)

 #####################################################################
 # Computing the binned time series though our bin_cor_function.R 
 #####################################################################
 bincor.tmp    <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
 binnedts      <- bincor.tmp$Binned_time_series

 #####################################################################
 # Testing our plot_ts function
 #####################################################################
 # "Screen" 
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="screen")
 
 # PDF format
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="pdf", 
  Hpdf=6, Wpdf=9, resfig=300, ofilename="plot_ts_RAW_BIN_enso_sst") 

 # PNG format 
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="png", 
  Hfig=900, Wfig=1200, resfig=150, ofilename="plot_ts_RAW_BIN_enso_sst") 

 #####################################################################
 #::  Figure 4 (Polanco-Mart<U+00ED>nez et al. (2017), (mimeo)). 
 #####################################################################

 #####################################################################
 #:: Loading the time series under analysis: example 2 (pollen ACER)  
 #####################################################################
 data(MD04_2845_siteID31)
 data(MD95_2039_siteID32)

 #####################################################################
 # Computing the binned time series though our bin_cor function 
 #####################################################################
 bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
 binnedts   <- bincor.tmp$Binned_time_series

 # To avoid NA's values  
 bin_ts1    <- na.omit(bincor.tmp$Binned_time_series[,1:2])
 bin_ts2    <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)]) 

 #####################################################################
 # Testing our plot_ts function: plot_ts.R
 #####################################################################
 # "Screen" 
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
  device="screen") 

 # PDF format
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4, 
  device="pdf", Hpdf=6, Wpdf=9, resfig=300, ofilename="ts_ACER_ABRUPT") 

 # PNG format 
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4, 
  device="png",  Hfig=900, Wfig=1200, resfig=150, ofilename="ts_ACER_ABRUPT") 
# }

Run the code above in your browser using DataLab