# NOT RUN {
# }
# NOT RUN {
## example of PLS-PM in bank customer satisfaction
data(csibank)
# select manifest variables
data.bank <-csibank[,6:32]
# define inner model matrix
Image = rep(0,6)
Expectation = c(1,0,0,0,0,0)
Quality = c(0,1,0,0,0,0)
Value = c(0,1,1,0,0,0)
Satis = c(1,1,1,1,0,0)
Loyalty = c(1,0,0,0,1,0)
inner.bank = rbind(Image,Expectation, Quality, Value, Satis,Loyalty)
colnames(inner.bank) = rownames(inner.bank)
# blocks of indicators (outer model)
outer.bank = list(1:6,7:10,11:17,18:21,22:24,25:27)
modes.bank = rep("A", 6)
# re-ordering those segmentation variables with ordinal scale
seg.bank= csibank[,1:5]
seg.bank$Age = factor(seg.bank$Age, ordered=TRUE)
seg.bank$Education = factor(seg.bank$Education, ordered=TRUE)
# Pathmox Analysis
bank.pathmox=pls.pathmox(data.bank, inner.bank, outer.bank, modes.bank,SVAR=seg.bank,signif=0.05,
deep=2,size=0.2,n.node=20)
# }
# NOT RUN {
## example of PLS-PM in bank customer satisfaction
data(csibank)
# select manifest variables
data.bank <-csibank[,6:32]
# define inner model matrix
Image = rep(0,6)
Expectation = c(1,0,0,0,0,0)
Quality = c(0,1,0,0,0,0)
Value = c(0,1,1,0,0,0)
Satis = c(1,1,1,1,0,0)
Loyalty = c(1,0,0,0,1,0)
inner.bank = rbind(Image,Expectation, Quality, Value, Satis,Loyalty)
colnames(inner.bank) = rownames(inner.bank)
# blocks of indicators (outer model)
outer.bank = list(1:6,7:10,11:17,18:21,22:24,25:27)
modes.bank = rep("A", 6)
# re-ordering those segmentation variables with ordinal scale
seg.bank= csibank[,1:5]
seg.bank$Age = factor(seg.bank$Age, ordered=TRUE)
seg.bank$Education = factor(seg.bank$Education, ordered=TRUE)
# Pathmox Analysis
bank.pathmox=pls.pathmox(data.bank, inner.bank, outer.bank, modes.bank,SVAR=seg.bank,signif=0.05,
deep=2,size=0.2,n.node=20)
# }
Run the code above in your browser using DataLab