Learn R Programming

⚠️There's a newer version (1.3.2) of this package.Take me there.

poems: Pattern-oriented ensemble modeling system (for spatially explicit populations)

The poems package provides a framework of interoperable R6 (Chang, 2020) classes for building ensembles of viable models via the pattern-oriented modeling (POM) approach (Grimm et al., 2005). Pattern-oriented modeling is a vigorous form of statistical validation in which simulations and their parameter settings are summarized using key metrics and converged toward multiple observed patterns, or targets.

The package provides a process-based population model related to the functionality of RAMAS or Vortex, but in a free and open source format, with high customizability. The package includes classes for encapsulating and generating model parameters, and managing the POM workflow. The workflow includes:

  1. Model setup including generated spatial layers and demographic population model parameters.
  2. Generating model parameters via Latin hypercube sampling (Iman & Conover, 1980).
  3. Running multiple sampled model simulations.
  4. Collating summary results metrics via user-defined functions.
  5. Validating and selecting an ensemble of models that best match known patterns.

By default, model validation and selection utilizes an approximate Bayesian computation (ABC) approach (Beaumont et al., 2002) using the abc package (Csillery et al., 2015). However, alternative user-defined functionality could be employed.

The package includes a spatially explicit demographic population model simulation engine, which incorporates default functionality for density dependence, correlated environmental stochasticity, stage-based transitions, and distance-based dispersal. The user may customize the simulator by defining functionality for translocations, harvesting, mortality, and other processes, as well as defining the sequence order for the simulator processes. The framework could also be adapted for use with other model simulators by utilizing its extendable (inheritable) base classes.

Installation

You can install poems from GitHub using:

# install.packages("devtools")
remotes::install_github("GlobalEcologyLab/poems")

Example

The following simple example demonstrates how to run a single spatially explicit demographic population model using poems:

library(poems)

# Demonstration example region (U Island) and initial abundance
coordinates <- data.frame(
  x = rep(seq(177.01, 177.05, 0.01), 5),
  y = rep(seq(-18.01, -18.05, -0.01), each = 5)
)
template_raster <- Region$new(coordinates = coordinates)$region_raster # full extent
template_raster[][-c(7, 9, 12, 14, 17:19)] <- NA # make U Island
region <- Region$new(template_raster = template_raster)
initial_abundance <- seq(0, 300, 50)
raster::plot(region$raster_from_values(initial_abundance),
  main = "Initial abundance", xlab = "Longitude (degrees)",
  ylab = "Latitude (degrees)", zlim = c(0, 300), colNA = "blue"
)

# Set population model
pop_model <- PopulationModel$new(
  region = region,
  time_steps = 5,
  populations = 7,
  initial_abundance = initial_abundance,
  stage_matrix = matrix(c(
    0, 2.5, # Leslie/Lefkovitch matrix
    0.8, 0.5
  ), nrow = 2, ncol = 2, byrow = TRUE),
  carrying_capacity = rep(200, 7),
  density_dependence = "logistic",
  dispersal = (!diag(nrow = 7, ncol = 7)) * 0.05,
  result_stages = c(1, 2)
)

# Run single simulation
results <- population_simulator(pop_model)
results # examine
#> $all
#> $all$abundance
#> [1]  977 1090 1238 1256 1341
#> 
#> $all$abundance_stages
#> $all$abundance_stages[[1]]
#> [1] 574 643 755 731 847
#> 
#> $all$abundance_stages[[2]]
#> [1] 403 447 483 525 494
#> 
#> 
#> 
#> $abundance
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]   59  134  157  147  173
#> [2,]   90  102  157  169  197
#> [3,]  133  156  192  202  191
#> [4,]  168  149  154  180  168
#> [5,]  163  180  178  193  192
#> [6,]  171  181  192  189  219
#> [7,]  193  188  208  176  201
#> 
#> $abundance_stages
#> $abundance_stages[[1]]
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]   28   76  100   83  108
#> [2,]   55   56  103   94  133
#> [3,]   83   91  108  121  115
#> [4,]  101   96   82  129   86
#> [5,]   95  109  113  102  141
#> [6,]  103  105  115   93  132
#> [7,]  109  110  134  109  132
#> 
#> $abundance_stages[[2]]
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]   31   58   57   64   65
#> [2,]   35   46   54   75   64
#> [3,]   50   65   84   81   76
#> [4,]   67   53   72   51   82
#> [5,]   68   71   65   91   51
#> [6,]   68   76   77   96   87
#> [7,]   84   78   74   67   69
raster::plot(region$raster_from_values(results$abundance[, 5]),
  main = "Final abundance", xlab = "Longitude (degrees)",
  ylab = "Latitude (degrees)", zlim = c(0, 300), colNA = "blue"
)

Further examples utilizing the POM workflow and more advanced features of poems can be found in the accompanying vignettes.

Citation

You may cite poems in publications using our software paper in Methods in Ecology and Evolution:

Fordham, D. A., Haythorne, S., Brown, S. C., Buettel, J. C., & Brook, B. W. (2021). poems: R package for simulating species’ range dynamics using pattern‐oriented validation. Methods in Ecology and Evolution, 12(12), 2364-2371.

References

Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). ‘Approximate Bayesian computation in population genetics’. Genetics, vol. 162, no. 4, pp, 2025–2035. doi:10.1093/genetics/162.4.2025

Chang, W. (2020). ‘R6: Encapsulated Classes with Reference Semantics’. R package version 2.5.0. Retrieved from https://CRAN.R-project.org/package=R6

Csillery, K., Lemaire L., Francois O., & Blum M. (2015). ‘abc: Tools for Approximate Bayesian Computation (ABC)’. R package version 2.1. Retrieved from https://CRAN.R-project.org/package=abc

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H. H., Weiner, J., Wiegand, T., DeAngelis, D. L., (2005). ‘Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology’. Science vol. 310, no. 5750, pp. 987–991. doi:10.1126/science.1116681

Iman R. L., Conover W. J. (1980). ‘Small sample sensitivity analysis techniques for computer models, with an application to risk assessment’. Commun Stat Theor Methods A9, pp. 1749–1842. doi:10.1080/03610928008827996

Copy Link

Version

Install

install.packages('poems')

Monthly Downloads

236

Version

1.3.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

July Pilowsky

Last Published

September 19th, 2024

Functions in poems (1.3.1)

GenerativeTemplate

R6 class representing a nested container for generator attributes
Generator

R6 class representing a dynamic attribute generator
DispersalGenerator

R6 class representing a dispersal generator.
GenericModel

R6 class representing a generic model.
GenericManager

R6 class representing a generic manager.
LatinHypercubeSampler

R6 class to represent a Latin hypercube sampler.
DispersalTemplate

R6 class representing a nested container for dispersal generator attributes
ModelSimulator

R6 class representing a model simulator.
GenericClass

R6 class with generic reusable functionality
DispersalFriction

R6 class representing a dispersal friction.
Region

R6 class representing a study region.
SpatialCorrelation

R6 class representing a spatial correlation.
SimulationManager

R6 class representing a simulation manager.
SimulationResults

R6 class representing simulation results.
ResultsManager

R6 class representing a results manager.
SpatialModel

R6 class representing a spatial model
SimulationModel

R6 class representing a simulation model
SimulatorReference

R6 class for a simulator reference
PopulationModel

R6 class representing a population model
PopulationResults

R6 class representing population simulator results.
poems

poems: Pattern-oriented ensemble modeling and simulation
population_dispersal

Nested functions for population dispersal.
population_results

Nested functions for initializing, calculating and collecting population simulator results.
population_transformation

Nested functions for a user-defined population abundance (and capacity) transformation.
population_env_stoch

Nested functions for population environmental stochasticity.
population_transitions

Nested functions for stage-based population transitions.
Validator

R6 class representing a pattern-oriented validator.
population_density

Nested functions for population density dependence.
population_simulator

Runs a stage-based demographic population model simulation.
poems-package

poems: Pattern-Oriented Ensemble Modeling System
thylacine_example_metrics

Thylacine vignette demonstration example metrics
tasmania_modifier

Tasmania land-use modifier raster
thylacine_bounty_record

Thylacine vignette bounty record
tasmania_ibra_data

Thylacine vignette Tasmania IBRA data
thylacine_example_metrics_rerun

Thylacine vignette demonstration example (re-run) metrics
tasmania_ibra_raster

Thylacine vignette Tasmania IBRA raster
thylacine_hs_raster

Thylacine vignette habitat suitability raster
thylacine_example_matrices_rerun

Thylacine vignette demonstration example (re-run) matrices
thylacine_example_matrices

Thylacine vignette demonstration example matrices
tasmania_raster

Thylacine vignette Tasmania raster