powered by
Posterior distribution of eigenvalues
posterior.evals(x)
mcmc object of (co)variances stacked column-wise
posterior eigenvalues
posterior.cor, posterior.inverse, posterior.ante
posterior.cor
posterior.inverse
posterior.ante
# NOT RUN { v<-rIW(diag(2),3, n=1000) hist(posterior.evals(mcmc(v))[,2]) # }
Run the code above in your browser using DataLab