The variance of the prediction distribution
# S4 method for pfilterd_pomp
pred.var(object, vars, ...)
result of a filtering computation
optional character; names of variables
ignored
The prediction distribution is that of $$X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_{k-1})=y^*_{k-1},$$ where \(X(t_k)\), \(Y(t_k)\) are the latent state and observable processes, respectively, and \(y^*_k\) is the data, at time \(t_k\).
The prediction variance is therefore the variance of this distribution $$\mathrm{Var}[X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_{k-1})=y^*_{k-1}].$$
More on sequential Monte Carlo methods:
bsmc2()
,
cond.logLik()
,
eff.sample.size()
,
filter.mean()
,
filter.traj()
,
kalman
,
mif2()
,
pfilter()
,
pmcmc()
,
pred.mean()
,
saved.states()
,
wpfilter()
Other extraction methods:
coef()
,
cond.logLik()
,
covmat()
,
eff.sample.size()
,
filter.mean()
,
filter.traj()
,
forecast()
,
logLik
,
obs()
,
pred.mean()
,
saved.states()
,
spy()
,
states()
,
summary()
,
timezero()
,
time()
,
traces()