Retrieve latent state trajectories from a particle filter calculation.
# S4 method for pfilterd_pomp
saved.states(object, ...)# S4 method for pfilterList
saved.states(object, ...)
result of a filtering computation
ignored
The saved states are returned in the form of a list, with one element per time-point. Each element consists of a matrix, with one row for each state variable and one column for each particle.
When one calls pfilter
with save.states=TRUE
, the latent state vector associated with each particle is saved.
This can be extracted by calling saved.states
on the ‘pfilterd.pomp’ object.
More on sequential Monte Carlo methods:
bsmc2()
,
cond.logLik()
,
eff.sample.size()
,
filter.mean()
,
filter.traj()
,
kalman
,
mif2()
,
pfilter()
,
pmcmc()
,
pred.mean()
,
pred.var()
,
wpfilter()
Other extraction methods:
coef()
,
cond.logLik()
,
covmat()
,
eff.sample.size()
,
filter.mean()
,
filter.traj()
,
forecast()
,
logLik
,
obs()
,
pred.mean()
,
pred.var()
,
spy()
,
states()
,
summary()
,
timezero()
,
time()
,
traces()