##
###########################
## The GP models:
###########################
##
## Spatial prediction/interpolation
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# Spatial prediction using spT.Gibbs output
set.seed(11)
pred.gp <- predict(post.gp, newdata=DataValPred, newcoords=pred.coords)
print(pred.gp)
names(pred.gp)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(pred.gp$Mean))
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.gp <- predict(post.gp, newdata=DataValFore, newcoords=fore.coords,
type="temporal", foreStep=2)
print(fore.gp)
names(fore.gp)
# Forecast validations
spT.validation(DataValFore$o8hrmax,c(fore.gp$Mean))
# Use of "forecast" class
tmp<-as.forecast.object(fore.gp, site=1) # default for site 1
plot(tmp)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.gp <- predict(post.gp, newdata=DataFitFore, newcoords=fore.coords,
type="temporal", foreStep=2)
print(fore.gp)
names(fore.gp)
# Forecast validations
spT.validation(DataFitFore$o8hrmax,c(fore.gp$Mean)) #
# Use of "forecast" class
tmp<-as.forecast.object(fore.gp, site=5) # for site 5
plot(tmp)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gp.fitpred)
summary(post.gp.fitpred)
coef(post.gp.fitpred)
plot(post.gp.fitpred,residuals=TRUE)
names(post.gp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gp.fitpred$prediction[,1]))
###########################
## The AR models:
###########################
##
## Spatial prediction/interpolation
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# Spatial prediction using spT.Gibbs output
set.seed(11)
pred.ar <- predict(post.ar, newdata=DataValPred, newcoords=pred.coords)
print(pred.ar)
names(pred.ar)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(pred.ar$Mean))
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.ar <- predict(post.ar, newdata=DataValFore, newcoords=fore.coords,
type="temporal", foreStep=2, predAR=pred.ar)
print(fore.ar)
names(fore.ar)
# Forecast validations
spT.validation(DataValFore$o8hrmax,c(fore.ar$Mean))
# Use of "forecast" class
tmp<-as.forecast.object(fore.ar, site=1) # default for site 1
plot(tmp)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.ar <- predict(post.ar, newdata=DataFitFore, newcoords=fore.coords,
type="temporal", foreStep=2)
print(fore.ar)
names(fore.ar)
# Forecast validations
spT.validation(DataFitFore$o8hrmax,c(fore.ar$Mean)) #
# Use of "forecast" class
tmp<-as.forecast.object(fore.ar, site=1) # default for site 1
plot(tmp)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.ar.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="AR", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.ar.fitpred)
summary(post.ar.fitpred)
coef(post.ar.fitpred)
names(post.ar.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.ar.fitpred$prediction[,1]))
#################################
## The GPP approximation models:
#################################
##
## Spatial prediction/interpolation
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# Spatial prediction using spT.Gibbs output
set.seed(11)
pred.gpp <- predict(post.gpp, newdata=DataValPred, newcoords=pred.coords)
print(pred.gpp)
names(pred.gpp)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(pred.gpp$Mean))
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.gpp <- predict(post.gpp, newdata=DataValFore, newcoords=fore.coords,
type="temporal", foreStep=2)
print(fore.gpp)
names(fore.gpp)
# Forecast validations
spT.validation(DataValFore$o8hrmax,c(fore.gpp$Mean))
# Use of "forecast" class
tmp<-as.forecast.object(fore.gpp, site=1) # default for site 1
plot(tmp)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.gpp <- predict(post.gpp, newdata=DataFitFore, newcoords=fore.coords,
type="temporal", foreStep=2)
print(fore.gpp)
names(fore.gpp)
# Forecast validations
spT.validation(DataFitFore$o8hrmax,c(fore.gpp$Mean)) #
# Use of "forecast" class
tmp<-as.forecast.object(fore.gpp, site=1) # default for site 1
plot(tmp)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
knots.coords<-spT.grid.coords(Longitude=c(max(coords[,1]),
min(coords[,1])),Latitude=c(max(coords[,2]),
min(coords[,2])), by=c(4,4))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gpp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords, knots.coords=knots.coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gpp.fitpred)
summary(post.gpp.fitpred)
coef(post.gpp.fitpred)
plot(post.gpp.fitpred, residuals=TRUE)
names(post.gpp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gpp.fitpred$prediction[,1]))
##
Run the code above in your browser using DataLab