##
###########################
## Attach library spTimer
###########################
library(spTimer)
###########################
## The GP models:
###########################
##
## Model fitting
##
# Read data
data(DataFit);
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
# MCMC via Gibbs using default choices
set.seed(11)
post.gp <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords,
scale.transform="SQRT")
print(post.gp)
# MCMC via Gibbs not using default choices
# define the time-series
time.data<-spT.time(t.series=60,segment=1)
# hyper-parameters for the prior distributions
priors<-spT.priors(model="GP",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
# initial values for the model parameters
initials<-spT.initials(model="GP", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
# input for spatial decay, any one approach from below
#spatial.decay<-spT.decay(type="FIXED", value=0.01)
spatial.decay<-spT.decay(type="MH", tuning=0.08)
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.01,0.02),segments=5)
# Iterations for the MCMC algorithms
nItr<-5000
# MCMC via Gibbs
set.seed(11)
post.gp <- spT.Gibbs(formula=o8hrmax ~ cMAXTMP+WDSP+RH,
data=DataFit, model="GP", time.data=time.data,
coords=coords, priors=priors, initials=initials,
nItr=nItr, nBurn=0, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay)
print(post.gp)
# Summary and plots
summary(post.gp)
summary(post.gp,pack="coda")
plot(post.gp)
plot(post.gp,residuals=TRUE)
coef(post.gp)
terms(post.gp)
formula(post.gp)
model.frame(post.gp)
model.matrix(post.gp)
# Model selection criteria
post.gp$PMCC
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gp.fitpred)
summary(post.gp.fitpred)
coef(post.gp.fitpred)
plot(post.gp.fitpred)
names(post.gp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gp.fitpred$prediction[,1]))
###########################
## The AR models:
###########################
##
## Model fitting
##
# Read data
data(DataFit);
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
# MCMC via Gibbs using default choices
set.seed(11)
post.ar <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="AR", coords=coords,
scale.transform="SQRT")
print(post.ar)
# MCMC via Gibbs not using default choices
# define the time-series
time.data<-spT.time(t.series=60,segment=1)
# hyper-parameters for the prior distributions
priors<-spT.priors(model="AR",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
# initial values for the model parameters
initials<-spT.initials(model="AR", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
# Input for spatial decay
#spatial.decay<-spT.decay(type="FIXED", value=0.01)
spatial.decay<-spT.decay(type="MH", tuning=0.08)
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.01,0.02),segments=5)
# Iterations for the MCMC algorithms
nItr<-5000
# MCMC via Gibbs
set.seed(11)
post.ar <- spT.Gibbs(formula=o8hrmax~cMAXTMP+WDSP+RH,
data=DataFit, model="AR", time.data=time.data,
coords=coords, priors=priors, initials=initials,
nItr=nItr, nBurn=0, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay)
print(post.ar)
# Summary and plots
summary(post.ar)
plot(post.ar)
# Model selection criteria
post.ar$PMCC
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.ar.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="AR", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.ar.fitpred)
summary(post.ar.fitpred)
names(post.ar.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.ar.fitpred$prediction[,1]))
#################################
## The GPP approximation models:
#################################
##
## Model fitting
##
# Read data
data(DataFit);
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
# Define knots
knots<-spT.grid.coords(Longitude=c(max(coords[,1]),
min(coords[,1])),Latitude=c(max(coords[,2]),
min(coords[,2])), by=c(4,4))
# MCMC via Gibbs using default choices
set.seed(11)
post.gpp <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GPP", coords=coords,
knots.coords=knots, scale.transform="SQRT")
print(post.gpp)
# MCMC via Gibbs not using default choices
# define the time-series
time.data<-spT.time(t.series=60,segment=1)
# hyper-parameters for the prior distributions
priors<-spT.priors(model="GPP",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
# initial values for the model parameters
initials<-spT.initials(model="GPP", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
# input for spatial decay
#spatial.decay<-spT.decay(type="FIXED", value=0.001)
spatial.decay<-spT.decay(type="MH", tuning=0.05) #
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.001,0.009),segments=10)
# Iterations for the MCMC algorithms
nItr<-5000
# MCMC via Gibbs
set.seed(11)
post.gpp <- spT.Gibbs(formula=o8hrmax~cMAXTMP+WDSP+RH,
data=DataFit, model="GPP", time.data=time.data,
coords=coords, knots.coords=knots,
priors=priors, initials=initials,
nItr=nItr, nBurn=0, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay)
print(post.gpp)
# Summary and plots
summary(post.gpp)
plot(post.gpp)
# Model selection criteria
post.gpp$PMCC
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
knots<-spT.grid.coords(Longitude=c(max(coords[,1]),
min(coords[,1])),Latitude=c(max(coords[,2]),
min(coords[,2])), by=c(4,4))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gpp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords, knots.coords=knots,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gpp.fitpred)
summary(post.gpp.fitpred)
plot(post.gpp.fitpred)
names(post.gpp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gpp.fitpred$prediction[,1]))
##
Run the code above in your browser using DataLab