Learn R Programming

frailtypack (version 2.4.1)

print.multivePenal: Print a Short Summary of parameter estimates of a multivariate frailty model

Description

Prints a short summary of parameter estimates of a multivariate frailty model, or more generally an object of class 'multivePenal'.

Usage

## S3 method for class 'multivePenal':
print(x, digits = max(options()$digits - 4, 6), ...)

Arguments

x
the result of a call to the multivePenal function
digits
number of digits to print
...
other unusued arguments

Value

  • Print, separately for each type of event (recurrent1, recurrent2 and terminal), the parameter estimates of the survival or hazard functions.
  • nthe number of observations used in the fit.
  • n.groupsthe maximum number of groups used in the fit
  • n.eventsthe number of recurrent event of type 1 observed in the fit
  • n.deathsthe number of terminal events observed in the fit
  • n.events2the number of the recurrent event of type 2 observed in the fit
  • thetavariance of the common frailty term
  • alphathe coefficient associated with the frailty parameter terminal event hazard function
  • coefthe coefficients of the linear predictor, which multiply the columns of the model matrix.
  • varHthe variance matrix of the dependency parameters (theta, eta, alpha1, alpha2) and of the coefficients.
  • varHIHthe robust estimation of the dependency parameters and of the coefficients.
  • SE(H)the standard error of the estimates deduced from the variance matrix of the dependency parameters and of the coefficients.
  • SE(HIH)the standard error of the estimates deduced from the robust estimation of the variance matrix of the dependency parameters and of the coefficients.
  • pp-value

See Also

multivePenal

Examples

Run this code
# /*** multivariate frailty model ***/
data(dataMultiv)
dataMultiv$timegap<-dataMultiv$t1-dataMultiv$t0

## Calendar-time ##


MultivSpli <-multivePenal(Surv(timegap,deltaEvent1)~cluster(id)+var1+var2+terminal(deltadc)+event2(deltaEvent2),formula.terminalEvent=~var1,formula2=~var1+var2+var3,data=dataMultiv,Frailty=TRUE, recurrentAG=F,cross.validation=T,n.knots=c(4,4,4),kappa=c(1,1,1),maxit=20,hazard="Splines",initialize=T)

## print a fit
MultivSpli

Run the code above in your browser using DataLab