## MCR for a single array:
y <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1),
rnorm(100,0, 1))
Pos <- sample(x=1:500, size=230, replace=TRUE)
Pos <- cumsum(Pos)
Chrom <- rep(1:23, rep(10, 23))
jp <- list(sigma.tau.mu=rep(0.05, 4), sigma.tau.sigma.2=rep(0.03, 4),
sigma.tau.beta=rep(0.07, 4), tau.split.mu=0.1, tau.split.beta=0.1)
fit.genome <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="genome",
burnin=100, TOT=1000, jump.parameters=jp, k.max = 4)
pMCR(fit.genome, p=0.8, alteration="Gain")
pMCR(fit.genome, p=0.8, alteration="Loss")
##MCR for two arrays:
z <- c(rnorm(110, 0, 1), rnorm(20, 3, 1),
rnorm(100,0, 1))
fit.array.genome <- RJaCGH(y=cbind(y,z), Pos=Pos, Chrom=Chrom, model="genome",
burnin=100, TOT=1000, jump.parameters=jp, k.max = 4)
pMCR(fit.array.genome, p=0.4, alteration="Gain")
pMCR(fit.array.genome, p=0.4, alteration="Loss")
Run the code above in your browser using DataLab