Learn R Programming

logcondens (version 2.0.6)

qloglin: Quantile Function In a Simple Log-Linear model

Description

Suppose the random variable $X$ has density function $$g_\theta(x) = \frac{\theta \exp(\theta x)}{\exp(\theta) - 1}$$ for an arbitrary real number $\theta$ and $x \in [0,1]$. The function qloglin is simply the quantile function $$G^{-1}_\theta(u) = \theta^{-1} \log \Big( 1 + (e^\theta - 1)u \Big)$$ in this model, for $u \in [0,1]$. This quantile function is used for the computation of quantiles of $\widehat F_m$ in quantilesLogConDens.

Usage

qloglin(u, t)

Arguments

u
Vector in $[0,1]^d$ where quantiles are to be computed at.
t
Parameter $\theta$.

Value

  • zVector containing the quantiles $G_n^{-1}(u_i)$ for $i = 1, \ldots, d$.