Last chance! 50% off unlimited learning
Sale ends in
This function builds a classification model using Random Forest
RANDOMFOREST(
train,
labels,
ntree = 500,
nvar = if (!is.null(labels) && !is.factor(labels)) max(floor(ncol(train)/3), 1) else
floor(sqrt(ncol(train))),
tune = FALSE,
...
)
The classification model.
The training set (description), as a data.frame
.
Class labels of the training set (vector
or factor
).
The number of trees in the forest.
Number of variables randomly sampled as candidates at each split.
If true, the function returns paramters instead of a classification model.
Other parameters.
if (FALSE) {
require (datasets)
data (iris)
RANDOMFOREST (iris [, -5], iris [, 5])
}
Run the code above in your browser using DataLab