A binary relation \(R\) is asymmetric, iff for all \(x, y\) we have \(xRy\) \(\Rightarrow\) \(\neg yRx\).
rel_is_asymmetric(R)an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.
rel_is_asymmetric returns
a single logical value.
Note that an asymmetric relation is necessarily irreflexive,
cf. rel_is_irreflexive.
rel_is_asymmetric finds out if a given binary relation
is asymmetric. Missing values in R may result in NA.
Also, check out rel_closure_symmetric
for the symmetric closure of R.
Other binary_relations: check_comonotonicity,
pord_nd, pord_spread,
pord_weakdom, rel_graph,
rel_is_antisymmetric,
rel_is_cyclic,
rel_is_irreflexive,
rel_is_reflexive,
rel_is_symmetric,
rel_is_total,
rel_is_transitive,
rel_reduction_hasse