Learn R Programming

spatial (version 7.3-5)

semat: Evaluate Kriging Standard Error of Prediction over a Grid

Description

Evaluate Kriging standard error of prediction over a grid.

Usage

semat(obj, xl, xu, yl, yu, n, se)

Arguments

obj
object returned by surf.gls
xl
limits of the rectangle for grid
xu
yl
yu
n
use n x n grid within the rectangle
se
standard error at distance zero as a multiple of the supplied covariance. Otherwise estimated, and it assumed that a correlation function was supplied.

Value

  • list with components x, y and z suitable for contour and image.

References

Ripley, B. D. (1981) Spatial Statistics. Wiley. Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

surf.gls, trmat, prmat

Examples

Run this code
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
contour(sesurf, levels=c(22,25))

Run the code above in your browser using DataLab