Learn R Programming

spatial (version 7.3-5)

surf.gls: Fits a Trend Surface by Generalized Least-squares

Description

Fits a trend surface by generalized least-squares.

Usage

surf.gls(np, covmod, x, y, z, nx = 1000, ...)

Arguments

np
degree of polynomial surface
covmod
function to evaluate covariance or correlation function
x
x coordinates or a data frame with columns x, y, z
y
y coordinates
z
z coordinates. Will supersede x$z
nx
Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object.
...
parameters for covmod

Value

  • list with components
  • betathe coefficients
  • x
  • y
  • zand others for internal use only.

References

Ripley, B. D. (1981) Spatial Statistics. Wiley. Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

trmat, surf.ls, prmat, semat, expcov, gaucov, sphercov

Examples

Run this code
library(MASS)  # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)

prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, type = "n")
contour(sesurf, levels = c(22, 25), add = TRUE)

Run the code above in your browser using DataLab