Usage
semimetric.hshift(fdata1, fdata2, t=1:ncol(DATA1),...)
semimetric.mplsr(fdata1, fdata2=fdata1, q=2, class1,...)
semimetric.pca(fdata1, fdata2=fdata1, q=1,...)
semimetric.deriv(fdata1, fdata2=fdata1, nderiv=1,
nknot=ifelse(floor(ncol(DATA1)/3)>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1)-nderiv-4)/2),floor(ncol(DATA1)/3)),...)
semimetric.fourier(fdata1, fdata2=fdata1, nderiv=0,
nbasis=ifelse(floor(ncol(DATA1)/3)>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1) - nderiv - 4)/2), floor(ncol(DATA1)/3)),
period=NULL,...)
Arguments
fdata1
Functional data 1 or curve 1. DATA1
with dimension (n1
x m
), where n1
is the number of curves and m
are the points observed in each curve.
fdata2
Functional data 2 or curve 2. DATA1
with dimension (n2
x m
), where n2
is the number of curves and m
are the points observed in each curve.
q
If semimetric.pca
: the retained number of principal components.
If semimetric.mplsr
: the retained number of factors.
nknot
semimetric.deriv argument: number of interior knots (needed for defining the B-spline basis).
nderiv
Order of derivation, used in semimetric.deriv
and
semimetric.fourier
nbasis
semimetric.fourier
: size of the basis.
period
semimetric.fourier
:allows to select the period for the fourier expansion.
t
semimetric.hshift
: vector which defines t
(one can choose 1,2,...,nbt
where nbt
is the number of points of the discretization)
class1
semimetric.mplsr
: vector containing a categorical response which corresponds to class number for units stored in DATA1
.
...
Further arguments passed to or from other methods.