sensitivityHHS(z, s, y, bound = c("upper", "lower"), selection,
groupings, empty.principal.stratum, ci = 0.95,
ci.method = c("bootstrap", "analytic"), na.rm = FALSE,
N.boot = 100, oneSidedTest = FALSE, twoSidedTest = TRUE,
isSlaveMode=FALSE)
NA
for
unselected records.s
indicating selection.c(g0,g1)
, first element g0
being the
value of z
which delineates the first group, the last element
g1
being the value of z
which delineates the second group.c(s0,s1)
; describes the s
values that select the empty principal stratum. If
empty.principal.stratum=c(s0,s1)
, then stratum defined by
S(g0)==s0 and S(g1)==s1 is the empty stratum.c("analytic","bootstrap")
.
Currently only works for NA
values should be
removed from the data set.ci.method
includes FALSE
TRUE
sensitivity2d
.ci.method
includes
y
values in the first group.y0
in the first group in the always selected principal
stratum at the bounds. Pr(Y(g0) <= y0|s(g0)="S(g1)=selection)y
values in the second group.y1
in the second group in the always selected principal
stratum at the bounds. Pr(Y(g1) <= y1|s(g0)="S(g1)=selection)sensitivityGBH
and specifying the sensitivity parameter beta as
-Inf
or Inf
.sensitivityGBH
, sensitivityJR
, sensitivitySGL
data(vaccine.trial)
est.bounds<-with(vaccine.trial,
sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
selection="infected", groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
N.boot=100)
)
est.bounds
Run the code above in your browser using DataLab