sensitivitySGL(z, s, d, y, v, beta, tau, time.points, selection, trigger,
groupings, empty.principal.stratum, followup.time,
ci=0.95, ci.method = c("analytic", "bootstrap"), na.rm = FALSE,
N.boot = 100L, interval = c(-100, 100),
oneSidedTest = FALSE, twoSidedTest = TRUE,
verbose = getOption("verbose"), isSlaveMode = FALSE)NA for unselected records.d) or
censoring.
Can be NA for unselected records.Inf and
-Inf are acceptable.tau.s indicating selection.d that denotes the post-selection event.c(g0,g1), the first element g0 being the
value of z the delineates the first group, the last element
g1 being the value of z which delineates the second group.c(s0,s1); describes the s
values that select the empty principal stratum. If
empty.principal.stratum=c(s0,s1), then stratum defined by
S(g0)==s0 and S(g1)==s1 is the empty stratum.v after which records are
lost to censoring.NA
values should be removed from the data set.ci.method includes FALSE.TRUE.sensitivity2dtime.points for specified
beta values. Array dimensions are length(time.points) by length(beta).=t|s(g0)=s(g1)=selection)>quantile if using ci.method
SCE.SCE.y0 in the first group in the always selected principal
stratum. Pr(Y(g0) <= y0|s(g0)="S(g1)=selection;" beta)<="" description="">=>y1 in the second group in the always selected principal
stratum. Pr(Y(g1) <= y1|s(g0)="S(g1)=selection;" beta)<="" description="">=>-Inf or
beta=Inf estimates the bounds for SCE.sensitivityGBH, sensitivityHHS, sensitivitySGD,
Survdata(vaccine.trial)
sens.time<-with(vaccine.trial,
sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
d=ARTinitiation, beta=c(.25, 0,-.25,-.5), tau=3,
time.points=c(2,3), selection="infected",
trigger="initiated ART", groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
N.boot=100, interval=c(-200,200))
)
sens.timeRun the code above in your browser using DataLab