sensitivitySGL(z, s, d, y, v, beta, tau, time.points, selection, trigger,
groupings, empty.principal.stratum, followup.time,
ci=0.95, ci.method = c("analytic", "bootstrap"), na.rm = FALSE,
N.boot = 100L, interval = c(-100, 100),
oneSidedTest = FALSE, twoSidedTest = TRUE,
verbose = getOption("verbose"), isSlaveMode = FALSE)
NA
for unselected records.d
) or
censoring.
Can be NA
for unselected records.Inf
and
-Inf
are acceptable.tau
.s
indicating selection.d
that denotes the post-selection event.c(g0,g1)
, the first element g0
being the
value of z
the delineates the first group, the last element
g1
being the value of z
which delineates the second group.c(s0,s1)
; describes the s
values that select the empty principal stratum. If
empty.principal.stratum=c(s0,s1)
, then stratum defined by
S(g0)==s0 and S(g1)==s1 is the empty stratum.v
after which records are
lost to censoring.NA
values should be removed from the data set.ci.method
includes FALSE
.TRUE
.sensitivity2d
time.points for specified
beta values. Array dimensions are length(time.points)
by length(beta)
.=t|s(g0)=s(g1)=selection)>
quantile
if using ci.method
SCE
.SCE
.y0
in the first group in the always selected principal
stratum. Pr(Y(g0) <= y0|s(g0)="S(g1)=selection;" beta)<="" description="">=>y1
in the second group in the always selected principal
stratum. Pr(Y(g1) <= y1|s(g0)="S(g1)=selection;" beta)<="" description="">=>-Inf
or
beta=Inf
estimates the bounds for SCE.sensitivityGBH
, sensitivityHHS
, sensitivitySGD
,
Surv
data(vaccine.trial)
sens.time<-with(vaccine.trial,
sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
d=ARTinitiation, beta=c(.25, 0,-.25,-.5), tau=3,
time.points=c(2,3), selection="infected",
trigger="initiated ART", groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
N.boot=100, interval=c(-200,200))
)
sens.time
Run the code above in your browser using DataLab