Learn R Programming

polySegratioMM (version 0.6-3)

setControl: Set up controls for a JAGS segregation ratio model run

Description

Sets up directives for running JAGS which are subsequently put into a .cmd file. MCMC attributes such as the size of burn in, length of MCMC and thinning may be specified

Usage

setControl(model, stem = "test", burn.in = 2000, sample = 5000, thin = 1, bugs.file = paste(stem, ".bug", sep = ""), data.file = paste(stem, "-data.R", sep = ""), inits.file = paste(stem, "-inits.R", sep = ""), monitor.var = model$monitor.var, seed=1)

Arguments

model
object of class modelSegratioMM specifying model parameters, ploidy etc
stem
text to be used as part of JAGS .cmd file name
burn.in
size of MCMC burn in (Default: 2000)
sample
size of MCMC sample (default: 5000)
thin
thinning interval between consecutive observations. Thinning may be a scalar or specified for each variable set by specifying a vector (default: 1 or no thinning)
bugs.file
name of .bug file
data.file
name of R data file
inits.file
name of R inits file
monitor.var
which variables to be monitored (Default: as per model)
seed
seed for JAGS run for Windows only (for unix set seed in setInits)

Value

Returns an object of class jagsControl which is a list with components
jags.code
Text containing control statements for JAGS .cmd file
model
object of class modelSegratioMM specifying model parameters, ploidy etc
stem
text to be used as part of JAGS .cmd file name
burn.in
size of MCMC burn in (Default: 2000)
sample
size of MCMC sample (default: 5000)
thin
thinning interval between consecutive observations
bugs.file
name of .bug file
data.file
name of R data file
inits.file
name of R inits file
monitor.var
which variables to be monitored
call
function call

See Also

setModel setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

Examples

Run this code
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)

## set up model with 3 components
x <- setModel(3,8)
x2 <- setPriors(x)

jc <- setControl(x)
print(jc)

Run the code above in your browser using DataLab