Learn R Programming

lgcp (version 1.3-3)

spatialparsEst: spatialparsEst function

Description

Having estimated either the pair correlation or K functions using respectively ginhomAverage or KinhomAverage, the spatial parameters sigma and phi can be estimated. This function provides a visual tool for this estimation procedure.

Usage

spatialparsEst(gk, sigma.range, phi.range, spatial.covmodel, covpars = c(),
  guess = FALSE)

Arguments

gk
an R object; output from the function KinhomAverage or ginhomAverage
sigma.range
range of sigma values to consider
phi.range
range of phi values to consider
spatial.covmodel
correlation type see ?CovarianceFct
covpars
vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct
guess
logical. Perform an initial guess at paramters? Alternative (the default) sets initial values in the middle of sigma.range and phi.range. NOTE: automatic parameter estimation can be can be unreliable.

Value

  • rpanel function to help choose sigma nad phi by eye

Details

To get a good choice of parameters, it is likely that the routine will have to be called several times in order to refine the choice of sigma.range and phi.range.

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/
  2. Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.
  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.
  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

ginhomAverage, KinhomAverage, thetaEst, lambdaEst, muEst