strip.default
is the function that draws the strips by default
in Trellis plots. Users can write their own strip functions, but most
commonly this involves calling strip.default
with a slightly
different arguments. strip.custom
provides a convenient way to
obtain new strip functions that differ from strip.default
only
in the default values of certain arguments.strip.default(which.given,
which.panel, var.name,
factor.levels,
shingle.intervals,
strip.names = c(FALSE, TRUE),
strip.levels = c(TRUE, FALSE),
sep = " : ",
style = 1,
horizontal = TRUE,
bg = trellis.par.get("strip.background")$col[which.given],
fg = trellis.par.get("strip.shingle")$col[which.given],
par.strip.text = trellis.par.get("add.text"))
strip.custom(...)
strip.names<
which.given
. Whether these levels are shown on the strlevels(shingle)
). Otherwise, it should be NULL
shingle.intervals
is
non-null. The best way to find out what effect t
horizontal=FALSE
is useful for strips on the
left of panels using strip.left=TRUE
col
, cex
, font
,
etc.strip.default
, overriding
whatever value it would have normally assumedstrip.default
is called for its side-effect, which is to draw a
strip appropriate for multi-panel Trellis conditioning plots.
strip.custom
returns a function that is similar to
strip.default
, but with different defaults for the arguments
specified in the call.style
argument --- non-default styles
are often more informative, especially when the names of the levels
of the factor x
are small. Traditional use is as
strip = function(...) strip.default(style=2,...)
, though
this can be simplified by the use of strip.custom
.xyplot
, Lattice
## Traditional use
xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = function(..., style) strip.default(..., style = 4))
## equivalent call using strip.custom
xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = strip.custom(style = 4))
xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = FALSE,
strip.left = strip.custom(style = 4, horizontal = FALSE))
Run the code above in your browser using DataLab