Learn R Programming

ltm (version 0.8-9)

summary: Summary method for fitted IRT models

Description

Summarizes the fit of either grm, ltm, rasch or tpm objects.

Usage

## S3 method for class 'grm':
summary(object, \dots)

## S3 method for class 'ltm':
summary(object, robust.se = FALSE, \dots)

## S3 method for class 'rasch':
summary(object, robust.se = FALSE, \dots)

## S3 method for class 'tpm':
summary(object, \dots)

Arguments

object
an object inheriting from either class grm, class ltm, class rasch or class tpm.
robust.se
logical; if TRUE robust estimation of standard errors is used, based on the sandwich estimator.
...
additional argument; currently none is used.

Value

  • An object of either class summ.grm, class summ.ltm or class summ.rasch with components,
  • coefficientsthe estimated coefficients' table.
  • Var.betasthe approximate covariance matrix for the estimated parameters; returned only in summ.ltm and summ.rasch.
  • logLikthe log-likelihood of object.
  • AICthe AIC for object.
  • BICthe BIC for object.
  • max.scthe maximum absolute value of the score vector at convergence.
  • convthe convergence identifier returned by optim().
  • countsthe counts argument returned by optim().
  • callthe matched call of object.
  • ltn.structa character vector describing the latent structure used in object; returned only in summ.ltm.
  • controlthe values used in the control argument in the fit of object.
  • nitemsthe number of items in the data set; returned only in summ.ltm and summ.rasch.

See Also

grm, ltm, rasch, tpm

Examples

Run this code
# use Hessian = TRUE if you want standard errors
fit <- grm(Science[c(1,3,4,7)], Hessian = TRUE)
summary(fit)

## One factor model using the WIRS data;
## results are reported under the IRT
## parameterization
fit <- ltm(WIRS ~ z1)
summary(fit)

Run the code above in your browser using DataLab