Learn R Programming

sirt (version 1.5-0)

rasch.pairwise: Pairwise Estimation Method of the Rasch Model

Description

This function estimates the Rasch model with a minimum chi square estimation method (cited in Fischer, 2007, p. 544) which is a pairwise conditional likelihood estimation approach.

Usage

rasch.pairwise(dat, conv = 1e-04, maxiter = 3000, progress = TRUE, 
        b.init = NULL)

## S3 method for class 'rasch.pairwise':
summary(object,...)

Arguments

dat
An $N \times I$ data frame of dichotomous item responses
conv
Convergence criterion
maxiter
Maximum number of iterations
progress
Display iteration progress?
b.init
An optional vector of length $I$ of item difficulties
object
Object of class rasch.pairwise
...
Further arguments to be passed

Value

  • An object of class rasch.pairwise with following entries
  • bItem difficulties
  • epsExponentiated item difficulties, i.e. eps=exp(-b)
  • iterNumber of iterations
  • convConvergence criterion
  • datOriginal data frame
  • freq.ijFrequency table of all item pairs
  • itemSummary table of item parameters

References

Fischer, G. H. (2007). Rasch models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 515-585). Amsterdam: Elsevier.

See Also

See summary.rasch.pairwise for a summary. A slightly different implementation of this conditional pairwise method is implemented in rasch.pairwise.itemcluster. Pairwise marginal likelihood estimation (also labeled as pseudolikelihood estimation) can be conducted with rasch.pml3.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Reading data set | pairwise estimation Rasch model
#############################################################################

data(data.read)
mod <- rasch.pairwise( data.read )
summary(mod)

Run the code above in your browser using DataLab