thirdclass
uses genetic marker data and parental allele frequencies to calculate the likelihoods for each of the 15 diploid genotype classes possible in the first two generations of admixture (each parental, F1, F2, and each backcross) for each pair of parental lineages.
thirdclass(G, P, type = "codominant")
type="dominant"
, there should be one row per individual. For type="codominant"
, each individual is to be represented in consecutive rows (one for each allele).
type="dominant"
, there should be one row per locus, giving the frequencies of the dominant or "1" allele. For type="codominant"
there should be a separate row for each allele AND the Allele names should match the data in G
.
"codominant"
and "dominant"
.
threeway
finds maximum likelihood estimates for non-diagnostic marker data. HItest3
compares classification to the continuous model MLE. For conventional two-way hybrid zone analyses, see HIC, HIest, HIclass, HItest
.
## Not run:
# ## all possible 2-way crosses after 2 generations
# G <- rbind(
# rep(1,12),rep(1,12), # parental 1
# rep(2,12),rep(2,12), # parental 2
# rep(3,12),rep(3,12), # parental 3
# rep(1,12),rep(2,12), # 1 x 2 F1
# rep(1:2,each=6),rep(1:2,6), # 1 x 2 F2
# rep(1,12),rep(1:2,6), # 1 x 1 x 2 BC
# rep(2,12),rep(1:2,6), # 1 x 2 x 2 BC
# rep(1,12),rep(3,12), # 1 x 3 F1
# rep(c(1,3),each=6),rep(c(1,3),6), # 1 x 3 F2
# rep(1,12),rep(c(1,3),6), # 1 x 1 x 3 BC
# rep(3,12),rep(c(1,3),6), # 1 x 3 x 3 BC
# rep(2,12),rep(3,12), # 2 x 3 F1
# rep(2:3,each=6),rep(2:3,6), # 2 x 3 F2
# rep(3,12),rep(2:3,6), # 2 x 3 x 3 BC
# rep(2,12),rep(2:3,6) # 2 x 2 x 3 BC
# )
#
# P <- data.frame(Locus=rep(1:12,each=3),allele=rep(1:3,12),P1=rep(c(1,0,0),12),
# P2=rep(c(0,1,0),12),P3=rep(c(0,0,1),12))
#
# Est <- HIC3(G,P)
# Class <- thirdclass(G,P)
# HItest3(Class,Est)
#
# ## now for some three-way mixes
# G3 <- matrix(1+rbinom(200,2,.5),ncol=10)
# Est3 <- HIC3(G3,P)
# Class3 <- thirdclass(G3,P)
# HItest3(Class3,Est3) # usually all classifications will be impossible because all
# # individuals will have nonzero contributions from each of the
# # three parentals
#
# ## bias toward parental 1
# G3 <- matrix(1+rbinom(200,2,.25),ncol=10)
# Est3 <- HIC3(G3,P)
# Class3 <- thirdclass(G3,P)
# HItest3(Class3,Est3) # now you might have a few that look like F2's
# # between 1 and 2 (c110200)
# ## End(Not run)
Run the code above in your browser using DataLab