powered by
A handy function for adding multiple lagged columns to a data frame. Works with dplyr groups too.
dplyr
tk_augment_lags(.data, .value, .lags = 1, .names = "auto")
A tibble.
A column to have a difference transformation applied
One or more lags for the difference(s)
A vector of names for the new columns. Must be of same length as .lags.
.lags
Returns a tibble object describing the timeseries.
tibble
Benefits
This is a scalable function that is:
Designed to work with grouped data using dplyr::group_by()
dplyr::group_by()
Add multiple lags by adding a sequence of lags using the .lags argument (e.g. .lags = 1:20)
.lags = 1:20
Augment Operations:
tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
tk_augment_timeseries_signature()
tk_augment_holiday_signature() - Group-wise augmentation of holiday features
tk_augment_holiday_signature()
tk_augment_slidify() - Group-wise augmentation of rolling functions
tk_augment_slidify()
tk_augment_lags() - Group-wise augmentation of lagged data
tk_augment_lags()
tk_augment_differences() - Group-wise augmentation of differenced data
tk_augment_differences()
tk_augment_fourier() - Group-wise augmentation of fourier series
tk_augment_fourier()
Underlying Function:
lag_vec() - Underlying function that powers tk_augment_lags()
lag_vec()
# NOT RUN { library(tidyverse) library(timetk) m4_monthly %>% group_by(id) %>% tk_augment_lags(value, .lags = 1:20) # }
Run the code above in your browser using DataLab