# Load the simulated data.
data(trio.data)
# Prepare the data in trio.ped1 for a trio logic
# regression analysis by first calling
trio.tmp <- trio.check(dat = trio.ped1)
# and then applying
set.seed(123456)
trio.bin <- trio.prepare(trio.dat=trio.tmp, blocks=c(1,4,2,3))
# where we here assume the block structure to be
# c(1, 4, 2, 3), which means that the first LD "block"
# only consists of the first SNP, the second LD block
# consists of the following four SNPs in trio.bin,
# the third block of the following two SNPs,
# and the last block of the last three SNPs.
# set.seed() is specified to make the results reproducible.
# For the application of trio logic regression, some
# parameters of trio logic regression are changed
# to make the following example faster.
my.control <- lrControl(start=1, end=-3, iter=1000, output=-4)
# Please note typically you should consider much more
# than 1000 iterations (usually, at least a few hundred
# thousand).
# Trio regression can then be applied to the trio data in
# trio.ped1 by
lr.out <- trioLR(trio.bin, control=my.control, rand=9876543)
# where we specify rand just to make the results reproducible.
Run the code above in your browser using DataLab