Convenience tuning wrapper functions, using tune.
tune.svm(x, y = NULL, data = NULL, degree = NULL, gamma = NULL, coef0 = NULL,
cost = NULL, nu = NULL, class.weights = NULL, epsilon = NULL, ...)
best.svm(x, tunecontrol = tune.control(), ...)
tune.nnet(x, y = NULL, data = NULL, size = NULL, decay = NULL,
trace = FALSE, tunecontrol = tune.control(nrepeat = 5),
...)
best.nnet(x, tunecontrol = tune.control(nrepeat = 5), ...)tune.rpart(formula, data, na.action = na.omit, minsplit = NULL,
minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL,
usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth =
NULL, predict.func = NULL, ...)
best.rpart(formula, tunecontrol = tune.control(), ...)
tune.randomForest(x, y = NULL, data = NULL, nodesize = NULL,
mtry = NULL, ntree = NULL, ...)
best.randomForest(x, tunecontrol = tune.control(), ...)
tune.knn(x, y, k = NULL, l = NULL, ...)
formula and data arguments of function to be tuned.
predicting function.
function handling missingness.
rpart parameters.
svm
parameters.
knn parameters.
randomForest parameters.
parameters passed to
nnet.
object of class "tune.control" containing
tuning parameters.
Further parameters passed to tune.
tune.foo() returns a tuning object including the best parameter set obtained
by optimizing over the specified parameter vectors. best.foo()
directly returns the best model, i.e. the fit of a new model using the
optimal parameters found by tune.foo.
For examples, see the help page of tune().