# equivalent to tunePareto.svm()
cl <- tuneParetoClassifier(name = "svm",
classifier = svm,
predictor = predict,
classifierParamNames = c("kernel", "degree", "gamma",
"coef0", "cost", "nu",
"class.weights", "cachesize",
"tolerance", "epsilon",
"subset", "na.action"),
useFormula = FALSE,
trainDataName = "x",
trainLabelName = "y",
testDataName = "newdata",
modelName = "object",
requiredPackages="e1071")
# call TunePareto with the classifier
print(tunePareto(classifier = cl,
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
cost = c(0.001,0.01,0.1,1,10),
objectiveFunctions=
list(cvError(10, 10),
cvSpecificity(10, 10,
caseClass="setosa"))))
Run the code above in your browser using DataLab