Rdocumentation
powered by
Learn R Programming
TunePareto (version 2.5.3)
Multi-Objective Parameter Tuning for Classifiers
Description
Generic methods for parameter tuning of classification algorithms using multiple scoring functions (Muessel et al. (2012),
).
Copy Link
Link to current version
Version
Version
2.5.3
2.5.2
2.5.1
2.5
2.4
2.3
2.2
2.1
2.0
1.0
Install
install.packages('TunePareto')
Monthly Downloads
374
Version
2.5.3
License
GPL-2
Maintainer
Hans Kestler
Last Published
October 2nd, 2023
Functions in TunePareto (2.5.3)
Search all functions
rankByDesirability
Rank results according to their desirabilities
print.TuneParetoResult
Print method for objects used in TunePareto
recalculateParetoSet
Recalculate Pareto-optimal solutions
predict.TuneParetoModel
Prediction method for TuneParetoClassifier objects
tuneParetoClassifier
Create a classifier object
tunePareto
Generic function for multi-objective parameter tuning of classifiers
trainTuneParetoClassifier
Train a TunePareto classifier
predefinedObjectiveFunctions
Predefined objective functions for parameter tuning
predefinedClassifiers
TunePareto wrappers for certain classifiers
as.interval
Specify a continous interval
generateCVRuns
Generate cross-validation partitions
plotObjectivePairs
Plot a matrix of Pareto front panels
plotParetoFronts2D
A classical 2-dimensional plot of Pareto fronts
plotDominationGraph
Visualize the Pareto fronts of parameter configuration scores
TunePareto-package
Multi-objective parameter tuning for classifiers
allCombinations
Build a list of all possible combinations of parameter values
createObjective
Create a new objective function
precalculation
Predefined precalculation functions for objectives
mergeTuneParetoResults
Calculate optimal solutions from several calls of tunePareto