Akaike, H. (1973) Information theory as an extension of the maximum
likelihood principle. In: Second International Symposium on
Information Theory, pp. 267--281. Petrov, B.N., Csaki, F., Eds,
Akademiai Kiado, Budapest. Burnham, K. P., Anderson, D. R. (2002) Model Selection and
Multimodel Inference: a practical information-theoretic
approach. Second edition. Springer: New York.
Dail, D., Madsen, L. (2011) Models for estimating abundance from
repeated counts of an open population. Biometrics 67,
577--587.
Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC
criterion for underfitted regression and time series
models. Biometrika 78, 499--509.
Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992)
Modeling survival and testing biological hypotheses using marked
animals: a unified approach with case-studies. Ecological
Monographs 62, 67--118.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle,
J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when
detection probabilities are less than one. Ecology 83,
2248--2255.
Royle, J. A. (2004) N-mixture models for estimating population
size from spatially replicated counts. Biometrics 60,
108--115.
Sugiura, N. (1978) Further analysis of the data by Akaike's
information criterion and the finite corrections. Communications
in Statistics: Theory and Methods A7, 13--26.