Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


AICcmodavg (version 2.0-3)

xtable: Format Objects to LaTeX or HTML

Description

Functions to format various objects following model selection and multimodel inference to LaTeX or HTML tables. These functions extend the methods from the xtable package (Dahl 2014).

Usage

## S3 method for class 'aictab':
xtable(x, caption = NULL, label = NULL, align = NULL, 
        digits = NULL, display = NULL, nice.names = TRUE,
        include.AICc = TRUE, include.LL = TRUE, include.Cum.Wt = FALSE,
        \dots)

## S3 method for class 'boot.wt': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, include.AICc = TRUE, include.AICcWt = FALSE, \dots)

## S3 method for class 'dictab': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, include.DIC = TRUE, include.Cum.Wt = FALSE, \dots)

## S3 method for class 'mb.chisq': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, include.detection.histories = TRUE, \dots)

## S3 method for class 'modavg': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, print.table = FALSE, \dots)

## S3 method for class 'modavgEffect': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, print.table = FALSE, \dots)

## S3 method for class 'modavgPred': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, \dots)

## S3 method for class 'modavgShrink': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, print.table = FALSE, \dots)

## S3 method for class 'multComp': xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, nice.names = TRUE, print.table = FALSE, \dots)

Arguments

x
an object of class aictab, boot.wt, dictab, mb.chisq, modavg, modavgEffect, modavgPred, modavgShrink, or multComp resulting f
caption
a character vector of length 1 or 2 storing the caption or title of the table. If the vector is of length 2, the second item is the short caption used when LaTeX generates a list of tables. The default value is NULL and suppress
label
a character vector storing the LaTeX label or HTML anchor. The default value is NULL and suppresses the label.
align
a character vector of length equal to the number of columns of the table specifying the alignment of the elements. Note that the rownames are considered as an additional column and require an alignment value.
digits
a numeric vector of length one or equal to the number of columns in the table (including the rownames) specifying the number of digits to display in each column.
display
a character vector of length equal to the number of columns (including the rownames) specifying the format of each column. For example, use s for strings, f for numbers in the regular format, or d for in
nice.names
logical. If TRUE, column labels are modified to improve their appearance in the table. If FALSE, simpler labels are used, or the ones supplied directly by the user in the object storing the output.
include.AICc
logical. If TRUE, the column containing the information criterion of each model is printed in the table. If FALSE, the column is suppressed.
include.DIC
logical. If TRUE, the column containing the deviance information criterion (DIC) of each model is printed in the table. If FALSE, the column is suppressed.
include.LL
logical. If TRUE, the column containing the log-likelihood of each model is printed in the table. If FALSE, the column is suppressed.
include.Cum.Wt
logical. If TRUE, the column containing the cumulative Akaike weights is printed in the table. If FALSE, the column is suppressed.
include.AICcWt
logical. If TRUE, the column containing the Akaike weight of each model is printed in the table. If FALSE, the column is suppressed.
include.detection.histories
logical. If TRUE, the column containing detection histories is printed in the table. If FALSE, the column is suppressed.
print.table
logical. If TRUE, the model selection table is printed and other sections of the output are suppressed (e.g., model-averaged estimates). If FALSE, the model selection table is suppressed and only the other portion o
...
additional arguments passed to the function.

Details

xtable creates an object of the xtable class inheriting from the data.frame class. This object can then be used with print.xtable for added flexibility such as suppressing row names, modifying caption placement, and format tables in LaTeX or HTML format.

References

Dahl, D. B. (2014) xtable: Export tables to LaTeX or HTML. R package version 1.7-3. http://CRAN.R-project.org/package=xtable.

See Also

aictab, boot.wt, dictab, formatC, mb.chisq, modavg, modavgEffect, modavgPred, modavgShrink, multComp, xtable, print.xtable

Examples

Run this code
if(require(xtable)) {
##model selection
data(dry.frog)
##setup candidate models
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +
                       cent_Initial_mass + Initial_mass2,
                       data = dry.frog)
Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
                       cent_Initial_mass + Initial_mass2 +
                       Shade:Substrate, data = dry.frog)
Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
                       Initial_mass2, data = dry.frog)
Model.names <- c("additive", "interaction", "no shade")

##model selection table
out <- aictab(cand.set = Cand.models, modnames = Model.names)

xtable(out)
##exclude AICc and LL
xtable(out, include.AICc = FALSE, include.LL = FALSE)
##remove row names and add caption
print(xtable(out, caption = "Model selection based on AICc"),
      include.rownames = FALSE, caption.placement = "top")


##model-averaged estimate of Initial_mass2
mavg.mass <- modavg(cand.set = Cand.models, parm = "Initial_mass2",
                    modnames = Model.names)
#model-averaged estimate
xtable(mavg.mass, print.table = FALSE)
#table with contribution of each model
xtable(mavg.mass, print.table = TRUE)  


##model-averaged predictions for first 10 observations
preds <- modavgPred(cand.set = Cand.models, modnames = Model.names,
                    newdata = dry.frog[1:10, ])
xtable(preds)
}

Run the code above in your browser using DataLab