AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...) ## S3 method for class 'aov':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'clm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'clmm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'coxme':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'coxph':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'glm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, c.hat = 1, \dots)
## S3 method for class 'gls':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'lm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'lme':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'lmekin':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'maxlikeFit':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, c.hat = 1, \dots)
## S3 method for class 'mer':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'merMod':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'multinom':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, c.hat = 1, \dots)
## S3 method for class 'nlme':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'nls':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'polr':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'rlm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
## S3 method for class 'unmarkedFit':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, c.hat = 1, \dots)
## S3 method for class 'vglm':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, c.hat = 1, \dots)
## S3 method for class 'zeroinfl':
AICc(mod, return.K = FALSE, second.ord = TRUE,
nobs = NULL, \dots)
clm
, clmm
, clogit
,
coxme
, coxph
, glm
, gls
, lm
,
lme
, lmekin
, maxlikeFit
, mer
FALSE
, the function returns the information
criteria specified. If TRUE
, the function returns K (number
of estimated parameters) for a given model.TRUE
, the function returns the second-order Akaike
information criterion (i.e., AICc).nobs
defaults to total number
of observations). This is relevant only for mixed models or various
models of unmarkedFit
c_hat
. Note that values of c.hat
different from 1 are only appropriate for binomial GLM's with trials
> 1 (i.e., success/trial or cbind(sAICc
returns the AIC, AICc, QAIC, or QAICc, or the number of
estimated parameters, depending on the values of the arguments.AICc
computes one of the following four information criteria:
Akaike's information criterion (AIC, Akaike 1973), the second-order
or small sample AIC (AICc, Sugiura 1978, Hurvich and Tsai 1991), the
quasi-likelihood AIC (QAIC, Burnham and Anderson 2002), and the
quasi-likelihood AICc (QAICc, Burnham and Anderson 2002). Note that
AIC and AICc values are meaningful to select among gls
or
lme
models fit by maximum likelihood; AIC and AICc based on
REML are valid to select among different models that only differ in
their random effects (Pinheiro and Bates 2000).Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261--304.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577--587. Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499--509.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248--2255.
Pinheiro, J. C., Bates, D. M. (2000) Mixed-effect models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108--115.
Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics: Theory and Methods A7, 13--26.
aictab
, confset
, importance
,
evidence
, c_hat
, modavg
,
modavgShrink
, modavgPred
##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)
##compute AICc with full likelihood
AICc(glob.mod, return.K = FALSE)
##compute AIC with full likelihood
AICc(glob.mod, return.K = FALSE, second.ord = FALSE)
##note that Burnham and Anderson (2002) did not use full likelihood
##in Table 3.2 and that the MLE estimate of the variance was
##rounded to 2 digits after decimal point
##compute AICc for mixed model on Orthodont data set in Pinheiro and
##Bates (2000)
require(nlme)
m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont,
method= "ML")
AICc(m1, return.K = FALSE)
Run the code above in your browser using DataLab