## generate data
set.seed(1)
n=200
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
fail.time=rexp(n)*exp(-beta*z)
cen.time=rexp(n)*1.25
y=pmin(fail.time, cen.time)
y=round(y*10)/10
delta=1*(fail.time<cen.time)
## fit the main effect Cox AIM model
a=cox.main(x, y, delta, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model of the sequence using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true index
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
Run the code above in your browser using DataLab