powered by
Calculates the distribution of the distances between the data points
DistanceDistributions(Data, DistanceMethods=c('bhjattacharyya', 'bray', 'canberra', 'chord', 'divergence', 'euclidean', 'minkowski', 'geodesic', 'hellinger', 'kullback', 'manhattan', 'maximum', 'soergel', 'wave', 'whittaker'), CosineNonParallel = TRUE, CorrelationDist = TRUE, Mahalanobis = FALSE, Podani = FALSE, PlotIt = FALSE, PlotSampleSize = 5e3)
List with elements
[1:n, 1:n] numeric matrix containing the distance matrix
ggplot object
[1:n, 1:m] A matrix, containing data as rows.
Character vector stating all distance methods such as 'euclidean'.
Boolean stating if cosine should be computed in parallel.
Boolean stating if CorrelationDist should be computed.
Boolean stating if Mahalanobis should be computed.
Boolean stating if Podani should be computed.
Boolean: TRUE => create plot. FALSE => no plot.
Integer stating the number of samples for plotting.
Michael Thrun
iris=datasets::iris if(requireNamespace("DataVisualizations",quietly=TRUE)){ library(DataVisualizations) DistanceDistributions(as.matrix(iris[,1:4]), c("euclidean"), PlotIt = FALSE) }
Run the code above in your browser using DataLab