Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (2023.3.8) of this package.
Take me there.
BNPdensity (version 2020.3.4)
Ferguson-Klass Type Algorithm for Posterior Normalized Random Measures
Description
Bayesian nonparametric density estimation modeling mixtures by a Ferguson-Klass type algorithm for posterior normalized random measures.
Copy Link
Link to current version
Version
Version
2023.3.8
2021.5.4
2020.3.4
2019.9.18
2019.9.11
2019.7.9
2017.03
2015.5
2013.8
0.7.9
0.7.8
0.7.7
Install
install.packages('BNPdensity')
Monthly Downloads
382
Version
2020.3.4
License
GPL (>= 2)
Maintainer
Guillaume Kon Kam King
Last Published
March 8th, 2020
Functions in BNPdensity (2020.3.4)
Search all functions
Enzyme1.out
Fit of MixNRMI1 function to the enzyme dataset
comment_on_NRMI_type
Comment on the NRMI process depending on the value of the parameters
comp1
Ties function: univariate
MixNRMI2
Normalized Random Measures Mixture of Type II
dt_
Non-standard student-t density
Mv
Continuous Jump heights function
dkcens2_1val
Density evaluation once
as.mcmc.multNRMI
Convert the output of multMixNRMI into a coda mcmc object
add
Add x and y
fcondYXAcens2
Conditional posterior distribution of the latents Y in the censoring case
MvInv
Invert jump heights function
cpo.NRMI1
Extract the Conditional Predictive Ordinates (CPOs) from a fitted object
asNumeric_no_warning
If the function Rmpfr::asNumeric returns a warning about inefficiency, silence it.
comp2
Ties function: bivariate
acidity
Acidity Index Dataset
give_kernel_name
Gives the kernel name from the integer code
cpo.NRMI2
Extract the Conditional Predictive Ordinates (CPOs) from a fitted object
plot.multNRMI
Plot the density estimate and the 95% credible interval
censor_code_rl
Censor code right-left
plot_prior_number_of_components
This plots the prior distribution on the number of components for the stable process. The Dirichlet process is provided for comparison.
gsHP
Updates the hyper-parameters of py0
gsYZstar
Jointly resampling Ystar and Zstar function
fcondYZXA
Conditional posterior distribution of the bivariate latents (Y,Z)
plotCDF_censored
Plot the Turnbull CDF and fitted CDF for censored data.
compute_optimal_clustering
Compute the optimal clustering from an MCMC sample
plotfit_censored
Plot the density estimate and the 95% credible interval for censored data
dk
Kernel density function
cpo.multNRMI
Extract the Conditional Predictive Ordinates (CPOs) from a list of fitted objects
qq_plot_censored
Plot the quantile-quantile graph for censored data.
dhalfcauchy
Density half Cauchy
compute_thinning_grid
Compute the grid for thinning the MCMC chain
convert_to_mcmc
Convert the output of multMixNRMI into a coda mcmc object
galaxy
Galaxy Data Set
cens_data_check
Censoring data check
fcondXA2cens2
Conditional density evaluation in the fully nonparametric model for censored data
dhalfnorm
Density half normal
MixNRMI2cens
Normalized Random Measures Mixture of Type II for censored data
qhalft
Quantile function half Student-t
cpo
Conditional predictive ordinate function
dkcens2
Density of the chosen kernel
dist_name_k_index_converter
Convert distribution names to indices
fcondYXA
Conditional posterior distribution of the latents Y
dhalft
Density half Student-t
rfyzstarcens2
Conditional posterior distribution of the distinct vectors (Ystar,Zstar) in the case of censoring
expected_number_of_components_Dirichlet
Computes the expected number of components for a Dirichlet process.
fill_sigmas
Repeat the common scale parameter of a semiparametric model to match the dimension of the location parameters.
enzyme
Enzyme Dataset
rhalfcauchy
Random number generator half Cauchy
dtnorm
Density truncated normal
grid_from_data_noncensored
Create a plotting grid from non-censored data.
gs5
Conditional posterior distribution of sigma
fcondYZXAcens2
Conditional posterior distribution of the bivariate latents (Y,Z) in the case of censoring
is_semiparametric
Tests if a fit is a semi parametric or nonparametric model.
expected_number_of_components_stable
Computes the expected number of components for a stable process.
fcondXA
Conditional density evaluation in the semiparametric model
grid_from_data
Create a plotting grid from censored or non-censored data.
rtnorm
Random number generator for a truncated normal distribution
multMixNRMI1
Multiple chains of MixNRMI1
fcondXA2
Conditional density evaluation in the fully nonparametric model
pp_plot_noncensored
Plot the percentile-percentile graph for non censored data.
print.NRMI1
S3 method for class 'MixNRMI1'
grid_from_data_censored
Create a plotting grid from censored data.
gs5cens2
Conditional posterior distribution of sigma in the case of censoring
multMixNRMI2cens
Multiple chains of MixNRMI2cens
gs3
Conditional posterior distribution of latent U
qq_plot_noncensored
Plot the quantile-quantile graph for non censored data.
gs4
Resampling Ystar function
phalft
Distribution function half Student-t
multMixNRMI1cens
Multiple chains of MixNRMI1cens
plotCDF_noncensored
Plot the empirical and fitted CDF for non censored data.
plotPDF_censored
Plot the density for censored data.
gsYZstarcens2
Jointly resampling Ystar and Zstar function in the case of censoring
pk
Kernel distribution function
multMixNRMI2
Multiple chains of MixNRMI2
plot.NRMI1
Plot the density estimate and the 95% credible interval
salinity
Salinity tolerance
gs4cens2
Resampling Ystar function in the case of censoring
p0
Centering function
plot_clustering_and_CDF
Plot the clustering and the Cumulative Distribution Function
plotPDF_noncensored
Plot the density and a histogram for non censored data.
rk
Kernel density sampling function
qt_
Quantile function non-standard Student-t
plot.NRMI2
Plot the density estimate and the 95% credible interval
process_dist_name
Process the distribution name argument into a distribution index
pp_plot_censored
Plot the percentile-percentile graph for non censored data, using the Turnbull estimator the position of the percentiles.
pt_
Distribution function non-standard student-t
plotfit_noncensored
Plot the density estimate and the 95% credible interval for noncensored data
rt_
Random number generator non-standard Student-t
is_censored
Test if the data is censored
qhalfcauchy
Quantile function half Cauchy
qhalfnorm
Quantile function half Normal
traceplot
Draw a traceplot for multiple chains
rfystarcens2
Conditional posterior distribution of the distinct Ystar in the case of censoring
rfyzstar
Conditional posterior distribution of the distinct vectors (Ystar,Zstar)
summarytext
Common text for the summary S3 methods
phalfnorm
Distribution function half Normal
print.multNRMI
S3 method for class 'multNRMI'
summary.multNRMI
S3 method for class 'multNRMI'
phalfcauchy
Distribution function half Cauchy
qgeneric
Generic function to find quantiles of a distribution
ptnorm
Distribution function truncated normal
summary.NRMI2
S3 method for class 'MixNRMI2'
rhalft
Random number generator half Student-t
qtnorm
Quantile function truncated normal
rfystar
Conditional posterior distribution of the distinct Ystar
print.NRMI2
S3 method for class 'MixNRMI2'
summary.NRMI1
S3 method for class 'MixNRMI1'
rhalfnorm
Random number generator half Normal
GOFplots
Plot Goodness of fits graphical checks for censored data
GOFplots_noncensored
Plot Goodness of fits graphical checks for non censored data
MixNRMI1
Normalized Random Measures Mixture of Type I
GOFplots_censored
Plot Goodness of fits graphical checks for censored data
Galaxy2.out
Fit of MixNRMI2 function to the galaxy dataset
Galaxy1.out
Fit of MixNRMI1 function to the galaxy dataset
BNPdensity-package
Bayesian nonparametric density estimation
Enzyme2.out
Fit of MixNRMI2 function to the enzyme dataset
MixNRMI1cens
Normalized Random Measures Mixture of Type I for censored data